
Logic Gates Appendix

Functional Simulation
In order to test the functionality of the design, e.g. a half adder, it should be simulated with

a testbench. An example of half adder description can be found in Listing 1 in the appendix

for Lab 2 (Combinational Logic). Testbench is a VHDL code, which applies stimulus to

design entity during simulation. An example of the stimulus for “00” input combination is

presented in Listing 1. First of all, inputs are assigned a test value. After a 20 ns wait

period, the outputs are compared to the expected values using assert statement (both sum

and carry outputs should be equal to ’0’). An error message is reported if they do not

match. The type of message is specified using severity statement. In Listing 1 the severity

level is set to error (the default setting in case severity statement is omitted). Other

possibilities include note, warning and failure (in case of failure the simulation will stop

immediately). The exact message to be displayed can be set using report statement.

Listing 1: Stimulus for “00” Input Combination

Create a new source file and choose Add or create simulation sources option. Leave I/O

Port Definitions in the Define Module window empty since testbench does not have any

ports. The created testbench source file can be found in the Sources window under

Simulation Sources category in the Project Manager flow section layout.

Double-click the testbench file to open it with the Text Editor. The skeleton code generated

by Vivado does not contain any necessary declarations and instantiations, so they should be

added manually. Listing 2 provides a skeleton testbench architecture description for the half

adder design.

a <= '0'; b <= '0';
wait for 20 ns;
assert (sum = '0') and (carry = '0') report “test failed for 00” severity error;

Listing 2: Skeleton Architecture Description for Half Adder Testbench

architecture Behavioral of half_adder_tb is

component half_adder is
Port (a : in STD_LOGIC;
 b : in STD_LOGIC;
 sum : out STD_LOGIC;
 carry : out STD_LOGIC);
end component half_adder;

signal a, b : std_logic := '0'; -- signals for inputs
signal sum, carry : std_logic; -- signals for outputs

begin

UUT : half_adder
Port map (a => a,
 b => b,
 sum => sum,
 carry => carry);

stimuli : process
begin
-- insert stimuli here
wait;
end process;

end Behavioral;

The declarative part of the architecture consists of the unit under test (UUT) component

declaration (half adder design) and the declaration of signals that will be mapped to the

inputs/outputs of the UUT. Note, that inputs and outputs are declared separately, since

inputs are provided with an initial value. Initialization is not needed for the signals that

represent outputs since their value depend directly on the value of signals that represent

inputs.

The architecture body consists of the UUT component instantiation and the stimuli process.

The component instantiation maps ports of the UUT component (on the left) to the signals

that are declared in the testbench architecture (to the right). The stimuli process should be

altered by adding the code to test all possible input combinations. Note, that the wait

statement is placed at the end of the process in order to stop the repeating generation of the

stimuli (since process loops back to the beginning when end statement is reached).

Figure 1: Half Adder Simulation Waveform

When testbench is ready, set it as the top simulation source if this hasn’t been done

automatically by the tool (or in order to set a different simulation source file as top). Select

Run Simulation option in the Flow Navigator under Simulation flow section, click Run

Behavioral Simulation. The simulation result for half adder design should be similar to the

one presented in Figure 1. The simulation result fully corresponds to the truth table of half

adder (Table 1 from Lab 2 appendix). If assert statements have also been used to check the

output values, the results are printed in the Tcl Console tab. Note, that no message will be

printed if the output value matches the specified expected value (an error message is

reported only if they do not match).

1 2 3 4

Figure 2: Simulation Layout in Vivado

In case it is required to restart the simulation from the beginning, press the Restart button

(button labeled as 1 in Figure 2). This will clear the waveform and place cursor at zero

time. To run the simulation press either Run All button (button labeled as 2 in Figure 2) or

Run for button (button labeled as 3 in Figure 2). Run All command will run the simulation

until all signals stop changing. Run for command will run the simulation for the amount of

time that is specified in the drop down menus to the right. Pushing Run for button again

will continue simulation from the point when it has been stopped for another specified time

period. Finally, in case the source files are changed, the simulator should be relaunched.

This can be done by pressing Relaunch Simulation button (button labeled as 4 in Figure 2).

Apart from monitoring the values of the signals that are declared in the testbench (and

added to the waveform automatically) it is possible to monitor the value on any signal that

is declared within the source files as well. For simulation that is shown in Figure 2, the half

adder description has been altered (Listing 3). Calculation of sum output is now broken

down into three parts: signal sum1 is assigned the value of the first term in the equation,

signal sum2 is assigned the value of the second term and final sum output is calculated by

using OR function for signals sum1 and sum2.

Listing 3: Alternative VHDL Description of a Half Adder

architecture half_adder_arch of half_adder is

signal sum1, sum2 : std_logic;

begin

sum1 <= (not a and b);
sum2 <= (a and not b);
sum <= sum1 or sum2;
carry <= a and b;

end half_adder_arch;

The Scope window in the Simulation layout of Vivado (Figure 2) lists all instances in the

simulated design hierarchy (with testbench being on top). By expanding the hierarchy it is

possible to access any design instance. When design instance is selected in the Scope

window, the list of all signals that are declared within that design instance (including

input/output ports) is show in the Objects window. The modified Half Adder design that is

instantiated in the testbench as UUT is selected in Figure 2. Note that Objects window lists

all inputs/outputs of the Half Added as well as internally declared signals sum1 and sum2.

These signals can be drag-and-dropped onto the Waveform window. It may be needed to

restart the simulation (there is no need to relaunch) to see the values of the newly added

signal in the Waveform window.

