
Sequential Logic Appendix

Overview of the basic elements of the synchronous sequential logic
In contrast to combinational logic (e.g. comparator and different adders discussed in the

previous labs), the output of sequential logic depends not only on the current input values,

but also on the previous input history. This means that sequential logic possesses an internal

state that changes in accordance with the applied sequence of input values. The result is

that the same set of input values can generate a different output since the internal state of

the sequential logic element might have been different.

The sequential circuits can be of asynchronous or synchronous type. In asynchronous

circuits the internal state starts changing immediately in response to the change of inputs. In

synchronous circuits the internal state can change only during certain periods of times that

are determined with the clock signal. Clock signal is a series of repeating pulses with fixed

frequency. Synchronous circuits can be configured to change internal state at the rising

edge (clock signal changes from LOW to HIGH) or falling edge (clock signal changes from

HIGH to LOW). This manual focuses only on the synchronous type sequential circuits.

The basic element of synchronous sequential logic is a flip-flop. It has two states (LOW

and HIGH) that can be changed by applying appropriate values to flip-flop’s control inputs.

A D-type flip-flop is shown in Figure 1 (as indicated with the “D” letter on its data input).

The triangle-shaped input denotes clock signal input, meaning this sequential circuit is

synchronous (edge-sensitive). Reset and enable are two commonly used control signals that

govern the state change process. When reset input is active, the flip-flow goes into

predefined reset state (usually LOW). Reset input usually has the highest priority, meaning

that other control signals are ignored when it is active. Enable input, when set, allows the

state change to take place. When enabled (reset is inactive and enable is active) the D-type

flip-flop stores the value that is fed to the data input D on the active edge. The internal state

of the flip-flop is then propagated to the data output Q.



clock

D data outputQ

R

enable

data input

E

reset

Figure 1: Block Diagram of D-type Flip-flop

VHDL description of the D-type flip-flop depicted above is shown in Listing 1. Signal “Q”

infers a register during synthesis, as it is assigned a value inside an edge-sensitive if
statement (with “clock'event and clock = '1' ” condition, alternatively “rising_edge(clock)”

can be used as well). This makes the else path excessive, as the storage element should hold

the data unchanged in any other case. The state change occurs on the rising edge of the

“clock”, because the condition implies that the signal changes from ’0’ to ’1’. The “reset”

input signal forces flip-flop into reset state (’0’) when active (’1’) and has priority over

“enable” since it is evaluated first in the description. When “reset” is inactive the flip-flop

stores the value from input “D” when “enable” is set (’1’). Otherwise, the flip-flop’s value

remains unchanged.

Listing 1: VHDL Description of D-type Flip-flop

process (clock)
begin
  if clock'event and clock = '1' then
    if reset = '1' then
      Q <= '0';
  elsif enable = '1' then

      Q <= D;
    end if;
  end if;
end process;

One flip-flop can store only one bit of information. However, the data items in digital

systems can be much bigger. In order to store multi-bit data flip-flops are grouper into



arrays called registers (Figure 2). Each flip-flop has individual input/output that can be

accessed in parallel, but all of them share clock and control signals (reset is also shared, but

is not shown in Figure 2) that allow joint operation. When arranged in such a way, the data

comprising of several bits can be simultaneously written to/read from all the flip-flops. The

VHDL description of a register is basically the same as in Listing 1, but “Q” and “D”

signals are of std_logic_vector type with the appropriate width (instead of std_logic as in

the case of a flip-flop).
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Figure 2: Block Diagram of 4-bit Register Built from Four D-type Flip-flops

Another possible arrangement of flip-flops in a register is to cascade them (data output of

one flip-flop goes to the data input of the next one). This type of register is called shift

register. An example of a shift register connected in serial-in, parallel-out (SIPO) fashion is

shown in Figure 3. All flip-flops share clock and control signals for joint operation, and the

content of all flip-flops can be read in parallel (hence “parallel-out”). However, saving of

data is performed via 1-bit input D (i.e. serially, hence “serial-in”). Thus it requires four

clock cycles to input (shift in) a 4-bit data into such register. Technically, in the same

manner data can be read out serially as well (shifted out).
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Figure 3: Block Diagram of 4-bit SIPO Shift Register Built from Four D-type Flip-flops



VHDL description of the SIPO shift register depicted above is shown in Listing 2. It is very

similar to the description of an ordinary register. The only difference is that when the shift

register is enabled, the states of flip-flops from 0 to 2 overwrite the states of neighboring

flip-flops from 1 to 3 (the content is moved one position to the right).

Listing 2: VHDL Description of 4-bit SIPO Shift Register

process (clock)
begin
  if clock'event and clock = '1' then
    if reset = '1' then
      Q <= (others => '0');
  elsif enable = '1' then

      Q(0) <= D;
      Q(1 to 3) <= Q(0 to 2);
    end if;
  end if;
end process;

The leftmost flip-flop stores the value from input “D”. However, during shift the state of

the rightmost flip-flop is lost. Similarly, the shifting may be arranged in a circular fashion

when instead of storing values from external input “D” the register stores its rightmost

value “Q(3)”. Also, it can be easily seen from the VHDL code that signal “Q” is of

std_logic_vector (0 to 3) type, while signal “D” is std_logic.

Another widely used sequential circuit is a counter. Counter stores the number of clock

cycles it has been active (enabled). The principle structure of a generic 4-bit counter is

shown in Figure 4. It comprises of a 4-bit register whose inputs and outputs are connected

to a combinational logic block that computes the next digit based on value of the one that is

currently stored. The exact logic inside the “next value function” depends on the numerical

system that is being employed. It is possible to count in, for example, binary, BCD or Gray

encoded formats. Similarly, the direction of counting can be implemented as incrementing

or decrementing.
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Figure 4: Block Diagram of a Generic 4-bit Counter

VHDL description of the 4-bit binary up (incrementing) counter is shown in Listing 3.

Essentially it is the description of an ordinary register, but its next state is calculated as

addition of one to the value that is currently stored. Note that the value of the

std_logic_vector type signal is not a number, thus arithmetic operations are not actually

defined for this type. In order to use addition with std_logic_vector type signal it must be

typecasted to unsigned type first (the value is treated as a binary number without sign). The

result of the addition is then typecasted back to std_logic_vector type since signal “Q” on

the left side of the assignment is of that type. The unsigned type and addition operation for

that type are defined in the ieee.numeric_std standard VHDL package that must be declared

in order for the VHDL code in Listing 3 to work. Also, note that ieee.numeric_std defines

addition of an integer type value to unsigned type value (there is no need to convert integer

type to unsigned type or vice versa).

Listing 3: VHDL Description of 4-bit Binary Up Counter
process (clock)
begin
  if clock'event and clock = '1' then
    if reset = '1' then
      Q <= (others => '0');
  elsif enable = '1' then

      Q <= std_logic_vector(unsigned(Q) + 1);
    end if;
  end if;
end process;


