
Structural Design

Task:

Implement a 2-bit adder using 1-bit full adder and

1-bit half adder as components (Figure 1) that are

connected together in a top-level module. Describe

both components in VHDL. Prepare two

implementations where VHDL components are

instantiated in:

VHDL top-level file

Block Design top-level file

Simulate and implement each project on FPGA

development board.

 Figure 1: 2-bit Adder

Structural design
The system can be represented as a collection of components and their interconnections

using structural design approach. In this way the hardware is described as schematic or

netlist, where internal structure of the interconnected components is hidden. The

components can be either regular structures (like logic gates, adders, comparators, registers,

etc.) or previously defined sources, which are used within another higher level design to

create a hierarchy.

a

carry in sum
carryb Half Adder

a

b

c

s
Half Adder

a

b

c

s

Half Adder
a

b

c

s

Figure 2: Full Adder Block Diagram

A simple 1-bit full adder circuit has three inputs and two outputs. It can be built from three

A0

B0

A1

B1

Half
Adder

Full
Adder

SUM0

SUM1

CARRY

CARRY

ha1

ha2

ha3

half adders as shown in Figure 2. The carry output of the ha3 half adder is left floating, as it

would always equal to ‘0’ (other half adders cannot have their carry outputs equal to ‘1’

both at the same time). Note that this example is meant only to illustrate the principle of

structural design and does not suggest the best way to describe a full adder.

Structural design using VHDL
In order to construct the full adder in Figure 2 using VHDL, the structural description style

can be used. The half adder design can be used as a component, thus effectively creating a

textual description of a schematic in Figure 2. Component is a piece of conventional VHDL

code, which can be used within another description. This allows to partition, share and

reuse VHDL code.

The half adder component should be designed first (refer to the example in the

Combinational Logic lab appendix). Once the half adder has been described, it can be used

to form full adder design by declaring it as a component in the declarative part of the full

adder architecture (before begin keyword). The component declaration is very similar to

entity declaration with keywords entity substituted for keyword component (Listing 1).

Listing 1: VHDL Declaration of Component Half Adder

component half_adder is
port (a, b: in std_logic;
 sum, carry: out std_logic);

end component;

The next step is to instantiate a component in the architecture body. Component

instantiation starts with a label, followed by component’s name. The label is required to

differentiate between multiple instances of the same component. The final component

instantiation part is mapping of component’s inputs/outputs to the ports and signals of the

higher level description. The mapping can be done in two ways as shown in Listing 2.

The named association maps each input/output of the component (to the left of “=>”

operator) to a corresponding signal (to the right of “=>” operator) of the higher level

description. Note, that the order, in which the ports are being mapped, does not correspond

to the order in component declaration. This is due to the fact that association is being stated

explicitly. On the other hand, in the positional association the signals are ordered exactly as

in component declaration. This in turn allows to omit the “=>” operator.

Listing 2: a) Positional and b) Named Association of Component Half Adder

ha1: half_adder
port map (a => ha1_a,
 sum => ha1_sum,
 b => ha1_b,
 carry => ha1_carry);

a) b)

Listing 3 shows three instantiation of half_adder component (all three using positional

association for port mapping), which form the full adder as shown in Figure 2. Note, that

the order of components is not important, since they are working concurrently (in parallel).

The schematic, which can be reconstructed from this structural VHDL description, should

be identical to the one in Figure 2.

Listing 3: Structural Description of Full Adder

ha3: half_adder port map (c_a, c_b, carry, open);
ha1: half_adder port map (a, b, s_a, c_a);
ha2: half_adder port map (s_a, carry_in, sum, c_b);

Note, that in order to form internal connection between components, three additional

signals must be declared: c_a, s_a, c_b. The connection is created by mapping the same

signal (e.g., c_a) to output port for one component (ha1) and to input for the other

component (ha3). This signal can be viewed as corresponding wire from full adder

schematic in Figure 2. The floating carry output of the ha3 half adder is specified with the

keyword open.

Structural design using Vivado Block Design
Similarly the full adder in Figure 2 can be created using Vivado Block Design. The VHDL

description of half adder can be packaged into IP and instantiated from the list of IPs.

However, for such trivial design IP generation may not be needed. As an alternative,

ha1: half_adder
port map (ha1_a, ha1_b, ha1_sum, ha1_carry);

VHDL source file can be added to the block design as an RTL module.

Select Create Block Design option in the Flow Navigator under IP Integrator flow section,

provide Design name and click OK to create a new Block design source file. Right-click on

an empty space in the block design and select Add Module option. Highlight half adder

design and click OK to place it in the block design. Add two more half adders and connect

them. For each port that should be connected to the pins of the FPGA (e.g. “A” and “B” of

HA_2), right-click on the port and select Make External option. This will create an External

Port and connect it to the selected port of RTL Module. Also, it is possible to right-click on

the RTL Module itself and select Make External option to create External Ports for all

unconnected ports of that RTL Module. The External Port name can be changed in the

External Port Properties. The end result should look similar to the one shown in Figure 3.

Note that carry output of the half adder “HA_0” is left floating. The logic associated with

that output (AND gate) will be automatically removed during implementation phase.

Figure 3: Full Adder Block Design

When the block design is ready, it should be set as the top source file of the project.

However, it is not possible to set a block design as top source file directly. Right-click

block design source file in the Sources window under Design Sources category in the

Project Manager flow section layout. Select Create HDL Wrapper option and click OK.

Leave the default Let Vivado manage wrapper and auto-updates option so that in case any

changes are made to the block design, the wrapper would update automatically. When HDL

wrapper is created for the block design, it can now be set as the top source file. This is done

automatically by the tool, however, if this is not the case (or in order to set a different

source file as top), right-click the wrapper and select Set as Top option. From this point the

design flow becomes identical to VHDL-based design flow.

