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ABSTRACT: A new hierarchical design error diagnosis algorithm for combinational circuits is proposed, which is 
based on the stuck-at fault model and assumes the case of single logic gate errors. Decision diagrams are used for 
representing and localizing stuck-at faults at the higher signal path level. On the basis of detected faulty signal paths, 
suspected stuck-at faults at gate inputs are calculated, and then mapped into suspected design error(s). Using the stuck at 
fault model allows to exploit standard gate-level automated test pattern generators (ATPG) for design error diagnosis. 
Experimental data on wellknown benchmark circuits show the advantage of the proposed method compared to the 
known algorithms of design error diagnosis.  

INTRODUCTION  
Design verification and design error localization in 
digital systems are becoming more and more time 
consuming tasks due to the fact that systems are 
becoming continuously more complex. 
Verification and error localization are traditionally 
handled separately: for verification the methods of 
simulation and tautology checking can be used, whereas 
for error localization, after an error is detected, other 
dedicated methods are introduced [1,2]. 
While a lot of work has been done in the field of test 
synthesis and fault diagnosis in relation to fabrication 
faults, very little has been done in the field of design 
error diagnosis [1-5]. In [6] a new BDD technique has 
been proposed, however the explosion of the complexity 
for some classes of circuits puts practical limitations to 
the use of BDDs in locating design errors. A brief 
overview of currently available solutions to the 
diagnosis problem has been given in [2]. 
The technique proposed in [1] assumes the existence of 
a single gate error in the combinational circuit. Simple 
gate errors are considered, and three error hypotheses 
have been introduced. The diagnoser works successively 
under one of these hypotheses. The reasoning will be 
carried out at the plain gate level. A set of rules has been 
developed for all procedures with gates concerning the 
diagnostic reasoning as well as the creation of activated 
paths through gates.  
In [7,8] for solving the same problem as in [1], a new 
model of structurally synthesized BDDs (SSBDD) [9] 
was introduced which allowed to increase the speed in 
error detection and localization. Differently from [1] 
where only the diagnosis problem is formulated and 
solved, in [7,8] the error detection and diagnosis are 
handled as a joint task which allows to increase the 
efficiency of error localization.  
In this paper a new algorithm for hierarchical design 
error diagnosis is presented which is based on general 
ideas presented in [7,8], and in details describes the fault 
calculation procedure.  

The use of SSBDDs allows to develop efficient higher 
than gate level fault reasoning procedures for increasing 
the speed in fault simulation and fault diagnosis. On 
SSBDDs, a primary set of suspected faulty signal paths 
are calculated. Based on these paths, a list of suspected 
faults is generated, which subsequently will be reduced 
to the minimum by using the information obtained from 
the test experiment.  
The method is based on the stuck-at fault model, where 
all the analysis and reasoning is carried out in terms of 
stuck-at faults and only in the end, the result of 
diagnosis will be mapped into the design error area. 
Such a treatment allows to exploit traditional ATPGs to 
serve the problem of design error diagnosis. 
The paper is organized in the following manner. Section 
2 presents the necessary  definitions and terminology. 
The use of stuck-at faults and mapping the diagnosis 
results into the design error area are explained in Section 
3, and representation of faults in the model is discussed 
in Section 4. The new error diagnosis technique is 
presented in Section 5. Experimental data are discussed 
in Section 6, and finally, Section 7 presents some 
conclusions. 

DEFINITIONS AND TERMINOLOGY 
Consider a circuit specification, and its implementation, 
both at the Boolean level. The specification output is 
given by a set of variables W = {w1 , w2 , ... , wm}, and 
the implementation output is given by a set of variables 
Y = {y1 , y2 , ... , ym}, where m is the number of outputs. 
Let X = {x1,x2,...,xn} be the set of input variables. The 
implementation is a gate network and Z is the set of 
internal variables used for the connection of gates. The 
gates implement simple Boolean functions AND, 
NAND, OR, NOR and NOT. An additional gate type 
FAN is added (one input, two or more outputs) to model 
fanout points. 
We use two different levels for representing the 
network: gate and macro-level representations.  
Let S be the set of variables in the implementation  S = 
Y ∪ Z ∪ X. Let XF and ZF be the subsets of inputs and 



internal variables that fanout (they are input to a FAN 
gate). Let ZFG be the subset of internal variables that are 
output of a FAN gate. At the gate level, the network is 
described by a set NG = {gk} of gate functions sk = gk 
(sk

1, sk
2, ... ,sk

h) where sk ∈ Y ∪ Z, and sk
j ∈ Z ∪ (X - 

XF). Let us introduce macro functions for representing 
tree-like subcircuits. Then, at the macro-level, the 
network is given by a set NF = {fk} of macro functions 
sk = fk (sk

1, sk
2, ..., sk

p) where sk ∈ Y ∪ ZF, and sk
j ∈ ZFG 

∪ (X - XF). 
Definition 1. Test patterns.  For a circuit with n inputs, a 
test pattern is a n-bit vector which may be binary Bn or 
ternary Tn, where B = {0,1} - the Boolean domain, T = 
{0,1,U} - the ternary domain, where U - is a don’t care. 
Definition 2. Stuck-at fault set. Let F be the set of stuck-
at faults s/1 and s/0, where s∈Z∪X. 
Definition 3. Detecting stuck-at faults. A test pattern Ti 
detects a stuck-at-e fault s/e, e ∈ {0,1} at the output yj, if 
when applying the test pattern Ti to the implementation 
and the specification, the result yj(Ti) ≠ wj (Ti) is 
observed. 
Definition 4. Stuck-at fault cover. The circuit is tested 
completely by a test T = {T1, T2, ... Tt} for stuck-at 
faults, iff  T detects all the faults in F. The gate gk which 
implements the function sk = gk (sk

1, sk
2, ... ,sk

h) is tested 
by T for stuck-at faults, iff T detects both stuck-at-1 and 
stuck-at-0 faults at all the gate inputs sk

j. 
The stuck-at fault model does not have in this paper a 
physical meaning. In reality, a design error is detected at 
yj when under the application of a test Tk, a result yj (Tk) 
≠ wj (Tk) is observed. Using the stuck-at fault model, we 
only imitate the traditional testing by comparing the 
behavior of the implementation and the specification as 
a “golden device”. From tests that have shown an error, 
we produce, as in the case of traditional testing, a 
diagnosis in terms of stuck-at faults, which are then 
mapped into design errors.  
The following design error types are considered 
throughout the paper in relation to gates gk ∈NG. 
Definition 5. Gate replacement error. It denotes a 
design error which can be corrected by replacing the 
gate gi  in NG with another gate gj , by gi → gj. 
Definition 6. Extra/missing invertor error. It denotes a 
design error which can be corrected by 
removing/inserting an invertor at some input s ∈ X, or at 
some fanout branch s ∈ ZFG : s → NOT(s). 
Definition 7. Single error hypothesis. Our design error 
diagnosis methodology is based on a single error 
hypothesis where it is assumed that in the circuit a single 
error from the following error types can exist: 1) an 
extra/missing inverter, 2) an arbitrary gate replacement 
between AND, OR, NAND, NOR gates. 

MAPPING GATE STUCK-AT FAULTS 
INTO DESIGN ERRORS  

Theorem 1. To detect a design error in the 
implementation at an arbitrary gate gk where sk = gk (s1, 

s2,...,sh), it is sufficient to apply a pair of test patterns 
which detect the stuck-at faults si /1 and si /0 at one of 
the gate inputs si, i = 1,2, ... h. 
The proof of the Theorem 1 is given in [7]. From the 
proof the following set of corollaries was driven which 
describes the mapping from a stuck-at fault diagnosis to 
a design error diagnosis: 
- localizing both the s/1 and s/0 faults on two or more 
gate inputs refers to the missing/extra invertor at the gate 
output, i.e. to the replacement errors: AND ↔ NAND 
and OR ↔ NOR; 
- localizing s/1 faults at one or more gate inputs refers to 
the replacement errors: AND → OR, OR → NAND, 
NAND → NOR, and NOR → AND; 
- localizing s/0 faults at one or more gate inputs refers to 
the replacement errors: AND → NOR, OR → AND, 
NAND → OR, and NOR → NAND; 
- localizing both the s/1 and s/0 faults at one of the gate 
inputs si refers to the error si → NOT(si) at this input; 
- localizing both the s-1 and s-0 faults at more than one 
branch of a primary input si∈XF  refers  to the error si  
→ NOT(si) at this input. 
The mapping of stuck-at faults into simple gate design 
errors can be represented by the following table.  
TABLE 1 

Stuck-at faults 
Gate  

s1 s2 
Design error 

 0 1 0 1 NAND 
  1  1 OR 

AND 0  0  NOR 
 0 1   NOT(x1) 
   0 1 NOT(x2) 
 0 1 0 1 NOR 
 0  0  AND 

OR  1  1 NAND 
 0 1   NOT(x1) 
   0 1 NOT(x2) 
 0 1 0 1 AND 
 0  0  OR 

NAND  1  1 NOR 
 0 1   NOT(x1) 
   0 1 NOT(x2) 
 0 1 0 1 OR 
  1  1 AND 

NOR 0  0  NAND 
 0 1   NOT(x1) 
   0 1 NOT(x2) 

 

MODELING STUCK-AT FAULTS AT 
TWO DIFFERENT LEVELS 
We now consider a fault modeling method which was 
developed for macro-level test generation based on 
using structurally synthesized BDDs (SSBDD) as the 
model for tree-like subcircuits or macros [9,10].  
Consider a given implementation as a network of 
macros (tree-like subcircuits) NF={fk}, where each 
macro implements a function sk = fk (sk

1, sk
2, ..., sk

p), 
given in an equivalent parenthesis form (EPF) [10], 
where the arguments sk

j ∈ Sk in the EPF are considered 
as literals. 



Definition 8.  Signal paths. Let sk = fk(sk
1, sk

2, ..., sk
p) be 

a macro implemented at the gate level, and Sk = {sk
1, sk

2, 
..., sk

p} be its set of inputs. We denote L(sk
j) the set of 

variables on a path from the input of the macro sk
j ∈ Sk 

to its output sk.  
As macros are trees, there exists a one-to-one 
correspondence between inputs sk

j
 ∈ Sk and the gate-

level signal paths L(sk
j) in the macro. The literal sk

j in 
the EPF is an inverted (not inverted) variable if the 
number of invertors on the path from sk

j to sk is odd 
(even). 
Definition 9. Faults on signal paths. Let F(sk

j/e) where 
e∈{0,1} be a set of all faults (a fault class) in the gate-
level signal path from the input sk

j of the macro Sk to its 
output sk.  
A fault sk

j/e can be regarded as the representative of the 
fault class F(sk

j/e), since to test all the faults F(sk
j/e) it is 

enough to test only the fault sk
j/e. 

A SSBDD is a graph Gk with a set of nodes Mk, which 
represents a macro fk so that one-to-one correspondence 
exists between the nodes m∈Mk and signal paths L(s) 
where s ∈ Sk [9,10]. Let s(m) denote the literal at the 
node m in the graph Gk. 
The procedure of formal synthesis of SSBDDs from 
gate-level networks based on a graph superposition 
procedure is considered in [7,8 ]. 
 
 
 

 

 

 

 

 
Fig.1. Combinational circuit 

 
Example 1. Consider a combinational circuit in Fig.1 
given as a Boolean function in an EPF as follows:  

y = ((x1 ∧ x2,1) ∨ (¬x2,2 ∧ x3,1)) ∧ ((x3,2 ∧ ¬x4,1)  
∨ (x4,2 ∧ x5)). 

The circuit in Fig.1 is represented by a structurally 
synthesized BDD in Fig.2. For simplicity, only indexes 
of the variables s∈S at the nodes of the circuit and of the 
SSBDD are shown.  

 
 
 
 
 
 
 
 
 

Fig.2. SSBDD for the combinational circuit in Fig.1.  

The one-to-one correspondence between the fault 
classes F(s(m)/e), e∈{0,1}, on paths L(s(m)) in the 
circuit, the representative  faults s(m)/e, and nodes mi in 
the SSBDD, is given in Table 2.  
As an example, to test the node m3 in the SSBDD for a 
fault ¬x2,2/0 (for stuck-at 1 at the branch x2,2 in Fig.1) 
we activate the paths shown by bold arrows in SSBDD 
(Fig.2) by the pattern x1=0,x2=0,x3=1,x4=0. This pattern 
detects all the faults x2,2/1, x6/0, x9/0, x12/0, x14/0 on the 
signal path (bold in Fig.1) from the input branch x2,2 to 
the output y of the circuit . Note the change of the fault 
type because of the invertor on the path. 

TABLE 2 
Nodes  
of the  

SSBDD 

Faults  
in the 

SSBDD 

Faults on the gate level 
F(s(m)/e), e∈{0,1} 

mi s(m)/e  
m1 x1/e x1/e, x8/e, x12/e, x14/e 
m2 x2,1/e x2,1/e, x8/e, x12/e, x14/e 
m3 ¬x2,2/e x2,2/¬e, x6/e, x9/e, x12/e, x14/e 
m4 x3,1/e x3,1/e, x9/e, x12/e, x14/e 
m5 x3,2/e x3,2/e, x10/e, x13/e, x14/e 
m6 ¬x4,1/e x4,1/¬e, x7/e, x10/e, x13/e, x14/e 
m7 x4,2/e x4,2/e, x11/e, x13/e, x14/e 
m8 x5/e x5/e, x11/e, x13/e, x14/e 

 

DESIGN ERROR DIAGNOSIS AT PATH 
AND GATE LEVELS 

The test patterns generated by traditional gate-level 
ATPGs for detecting the stuck-at faults in combinational 
circuits can be used for diagnosing single gate design 
errors. Assume we have generated a set of test patterns 
T = {T1, T2, ... Tt} for detecting the stuck-at faults at 
gate inputs and at the primary inputs of the circuit which 
are fanouts. 
Definition 10. Detectable faults. Let us call  

F(Ti, y) = {sj /ej: Ti → (∂y/∂sj = 1) & (sj = ¬e) }⊆ F, 
where sj∈S, a set of faults detectable by a test pattern Ti 
at a primary output y ∈ Y.  
Let us call  

F(Ti) = ∪ y ∈ Y F(Ti, y) 
a set of faults detectable by a test pattern Ti.  
Denote the subset of primary outputs where an error has 
been detected by applying the test pattern T i as  

E (Ti) = {ykk: yk (Ti) ≠ wk (Ti), yk ∈ Y}⊆ Y. 
Theorem 2. From failing of a test Ti, the following set of 
suspected faults results 

F*(Ti) = ∩ y∈ E(Ti) F(Ti, y) - ∪ y ∈Y- E(Ti) F(Ti, y). 
Proof. The proof results from the single error 
hypothesis. If an error has been detected at more than 
one outputs y ∈ E(Ti) ⊆ Y then only a single fault can 
be the cause of that. Therefore, only the intersection of 
sets of suspected faults F(Ti, y) at erroneos outputs 
y∈E(Ti) can contain the existing fault. On the other 
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hand, if some of these suspected faults from this 
intersection have a direct impact to the outputs where no 
error has been detected, they cannot be anymore 
suspected. Therefore, the union of all F(Ti, y) for all 
y∈Y-E(Ti) should be substracted from the intersection 
of suspected faults observed at erroneos outputs 
y∈E(Ti). ν 
Theorem 3. From a set E of failing test patterns where  

E = { Ti ∃j: Ti → (∂y/∂sj = 1) }⊆ T, 
the following set of suspected faults results 

F*(E) = ∪  Ti∈E [∩ y∈ E(Ti) F(Ti, y)] - 
∪  Ti∈E  [∪ y ∈Y- E(Ti) F(Ti, y)] - ∪ Ti∈F- E F(Ti)  

Proof. The proof results again from the single error 
hypothesis. From all the failing test patterns Ti ∈ E, a 
suspected set  

F‘(E) = ∪  Ti∈E [∩ y∈ E(Ti) F(Ti, y)] 
of faults  results.  
On the other hand, since all the faults  

F’’(E) = ∪  Ti∈E  [∪ y∈Y- E(Ti) F(Ti, y)], 
not detected by test patterns Ti ∈ E, and all the faults  

F’’(F-E) = ∪ Ti∈F-E F(Ti) 
not detected by test patterns Ti ∈ F-E, cannot be 
suspected, we have to substract F’’(E) and F’’(F-E)  
from F‘(E). ν 
From Theorems 2 and 3 the following algorithm for 
fault diagnosis results. 
Algoritm 1. 
1. Calculate F‘(E) = ∪  Ti∈E [∩ y∈ E(Ti) F(Ti, y)] as a set 

of suspected faults. 
2. Calculate F’’(E) = ∪  Ti∈E  [∪ y∈Y- E(Ti) F(Ti, y)] as a 

subset of not suspected faults. 
3. Calculate F’’(F-E) = ∪ Ti∈F-E F(Ti) as another subset 

of not suspected faults. 
4. Calculate F*(E) = F’(E) - F’’(E) – F’’(F-E) as the 

updated set of suspected faults. 
For improving the resolution of diagnosis, the following 
theorem can be used. 
Theorem 4. If two test patterns  T1  and  T2 which detect 
the both stuck-at faults s(m)/1 and s(m)/0 at the node m 
in Gk, will not fail then all the gates along the path 
L(s(m)) in the gate-implementation are free from design 
errors. 
The proof of the theorem is given in [7]. 
Example 2. Consider a test T with 8 patterns which are 
applied to inputs of the circuit in Fig.1 described by 
SSBDD in Fig.2. The test patterns Ti ∈T and the sets of 
detectable faults F(Ti, yk) are described in Table 3. The 
entries “1” or “0” in a columns i for s(mi) mean, 
correspondingly, detection of the fault s(mi)/1 or s(mi)/0. 
As we see, the test is complete, all the stuck-at faults in 
the circuit are tested, and according to Theorem 4 this 
test is able to detect all single gate design errors.  
 

TABLE 3 
Faults detected at i: s(mi) Ti 

Test 
pattern 1 2 3 4 5 6 7 8 E 

T1 1110x 0 0   0 0   0 
T2 0110x 1  1      1 
T3 11011 0 0     0 0 0 
T4 10011  1  1     1 
T5 0010x   0 0 0 0   0 
T6 11001     1  1  0 
T7 11110      1  1 0 
T8 00011    1     0 

 
Suppose now, the test patterns T2  and T4 fail which 
results in E={T2,T4}. From that, according to Algorithm 
1, we create an initial subset of suspected representative 
faults (high level diagnosis): 

F’(E) = F(T2) ∪ F(T4) = {x1 /1, x2,2 /0, x2,1 /1, x3,1 /1}. 
On the other side, since F’’(E) = ∅, the final set of 
suspected representative faults is: 

F*(E) =  F’(E) – F’’(F-E)  ={x1 /1, x2,1 /1, x2,2 /0}. 
Going now over to the lower level fault representation, 
we create from F*(E) according to Table 2, the 
following initial subset of suspected gate-level stuck-at 
faults (low level diagnosis): 

F’(E)  = {x1/1, x2,1/1, x2,2/0, x6/1, x8/1, x12/1, x14/1}. 
Using again Algorithm 1 we reduce the suspected fault 
set to as follows: 
F*(E) =  F’(E) - F’’(F-E)  = {x1/1,x2,1/1,x2,2/0,x6/1,x8/1}. 
Since the faults at x3,1 are missing, then according to 
Theorem 4, the gates g9 and g12 are fault free, and 
correspondingly, the faults x6/1 and x8/1 can not be any 
more suspected. Hence, we remove them from F*(E). 
Since the fault x2,2/0, according to the mapping rules in 
Table 1, does not fit to any fault combination for the 
NOT gate, the gate g6 is fault free, and we can remove 
also this fault from F*(E). 
From above, the final stuck-at fault diagnosis results: 

F*(E)  = {x1/1, x2,1,/1}, 
which according to Table 1 means the design error 
AND8 → OR8. To correct the design, the gate AND8 
(shaded in Fig. 1) should be replaced by gate OR. 

EXPERIMENTAL DATA 

For carrying out a set of design error diagnosis 
experiments, internationally recognized ISCAS´85 
benchmarks (columns 1,2,3,4 in Table 4) were used. 
Test patterns for detecting stuck-at faults in these 
circuits were created by the test generator described in 
[10]. The fault coverage (column 6) of the tests and the 
test generation time in seconds (column 11) are 
presented in Table 4. 
The goals of the experiments were twofold: 
- to compare the efficiency (the speed of fault 
localization) of the new diagnostic approach in 
comparison with previous results [1,2]; 



TABLE 4 

Number of Suspected Erroneous 
Gates Time,s 

Number 
Circuit 
Name Inputs Outputs Gates Experi-

ments 

Fault 
Coverage, 

% 
Min Max Av. 

Av. % 
of  

Total 

Test 
Gene-
ration 

Fault 
Analysis 
(average) 

Total 

Time 
for [1], 

s 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
c432 36 7 232 671 91,07 1* 107 8,9 3,82 0,79 0,1 0,9 17,57 
c499 41 32 618 1622 99,33 1 307 76,5 12,38 1,01 1,4 2,4 111,64 
c880 60 26 357 1144 100 1 33 6,2 1,73 0,19 0,5 0,7 126,79 

c1355 41 32 514 1830 99,51 1 248 58,4 11,37 1,35 1,5 2,9 241,79 
c1908 33 25 718 1922 99,31 1 76 11,1 1,55 0,93 1,6 2,5 341,92 
c2670 233 140 997 997* 94,97 1* 161 25,4 2,55 3,55 14,1 17,7 661,91 
c3540 50 22 1446 1446* 95,27 1* 86 10,1 0,70 3,08 3,7 6,8 1513,82 
c5315 178 123 1994 1994* 98,69 1* 239 11,1 0,56 2,38 29,4 31,8 1814,04 
c6288 32 32 2416 2416* 99,34 1* 138 8,4 0,35 2,17 2,7 4,9 1895,90 
c7552 207 108 2978 2978* 95,95 1* 269 16,0 0,54 12,06 44,8 56,9  

 
- to evaluate the design error diagnostic properties of 
test patterns generated by traditional gate-level ATPGs 
for only stuck-at fault detecting purposes. 
Experiments were carried out on the computer platform 
Sun SparcServer 20 (2 x Ultra Sparc II micro-
processors, 75MHz) with Solaris 2.5.1 OS. 
The number of experiments carried out for each circuit 
are shown in the column 5. For the cases marked by 
star (*), one random error for each gate was inserted, 
for other cases, all possible single gate errors were 
simulated and analysed. 
TABLE 5 

Suspected Erroneous 
Area 

Number 
Circuit 
Name 

Level of 
Abstraction Total 

Min Max Av. 
Av. % 

of Total 

Nodes 601 2 365 93,0 15,47 c499 
Gates 618 1 307 76,5 12,38 
Nodes 866 1 131 17,5 2,02 c1908 
Gates 718 1 76 11,1 1,55 

The efficiency in the speed of diagnosis (columns 11, 
12, 13) are compared to the results of [1,2] (column 
14). The total time of diagnosis (column 13) in this 
paper consists of two components: test generation time 
(column 11) and fault  diagnosis (column 12). 
However, it should be noted that in this paper the 
diagnostic resolution can not be compared with the one 
in [1,2] because the test patterns were originally not 
generated for diagnostic purposes. The numbers in 
columns 7, 8, and 9 show, correspondingly, the 
minimum, maximum and average diagnostic resolutions 
(numbers of suspected gates) reached by the tests.  
In the cases marked by star (*) in column 7, some 
design errors were not detected at all (as the test 
patterns were not generated with dignosis purposes). 
In Table 5, the diagnostic resolutions for two 
benchmark circuits (with the best and worst diagnostic 
resolutions) are shown for both higher and lower 
representation levels. The diagrams in Fig. 3 and 4 

show, correspondingly, the distribution of experiments 
with different diagnostic resolutions (the best case for 
the circuit c1908, and the worst case for the circuit 
c499). 

Fig.3. Distribution of diagnostic resolutions over all 
possible error cases for the circuit c1908. 

Fig.4. Distribution of diagnostic resolutions over all 
possible error cases for the circuit c499. 

To reach the same high resolution of [1,2], additional 
test patterns should be generated. For this purpose, the 
same method of [1,2] can be used. Since the suspected 
area (column 10) for diagnostic search is reduced from 
100% to from 0,35% (in the best case) to 12,38% (in 
the worse case), the combination of both methods – the 
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one proposed in the present paper and the other one 
presented in [1,2] can reach significant improvements 
compared to using only the method [1,2]. 
A very interesting result is that in 30% cases (c499, 
c1355, c1908) the tests with lower than 100% stuck-at 
fault coverage detected all possible single gate design 
errors. The reason lies in the mapping mechanism 
explained in Table 1 where each design error is mapped 
into a subset of at least two stuck-at faults.  
The method proposed in the paper has the following 
advantages compared to the previous results[1,2]: 
1. The whole procedure takes place hierarchically at 
three different levels: macro level (for error detection 
and for localization of the erroneos macro), gate level 
(for localization of the node related to the site of the 
design error), and “stuck-at fault to design error 
mapping” level for exact specification of the design 
error. Exploiting the hierarchy allows to combine the 
efficiency of working at the higher level (for error 
detecting) with the accuracy (needed for error 
diagnosis) at the lower level. 
2. Working with the stuck-at fault model allows to base 
on a single error hypothesis, which actually means 
working with all the three hypothesis from [1,2] in 
parallel. 

CONCLUSIONS 
In this paper, a new approach to diagnosis of design 
errors is presented to automatically diagnose single 
design errors in combinational circuits.  
The main original features of the method  are:  
- the hierarchical approach, based on using 

structurally synthesized BDDs,  
- the use of very powerful error detection and fault 

localization procedures based on SSBDDs, and  
- the idea of mapping stuck-at fault diagnosis into 

the final localization of the design error.  
The latter allows to use the test patterns and fault tables 
generated for stuck-at faults to produce design error 
diagnosis. 
Experimental data are provided for showing the 
efficiency of the method.  
The future research in this field is directed to the case 
of multiple design errors and to the case of complex 
gates. The use of word level DDs seems to be very 
efficient in design error diagnosis at higher functional 
levels like RTL or behavioral ones. 
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