
 HIERARCHICAL DESIGN ERROR DIAGNOSIS
IN COMBINATIONAL CIRCUITS
BY STUCK-AT FAULT TEST PATTERNS

R.UBAR, A.JUTMAN
TALLINN TECHNICAL UNIVERSITY, ESTONIA

KEYWORDS: Design Errors, Stuck-at Faults, Fault Localization,
Combinational Circuits, Decision Diagrams

ABSTRACT: A new hierarchical design error diagnosis algorithm for combinational circuits is proposed, which is
based on the stuck-at fault model and assumes the case of single logic gate errors. Decision diagrams are used for
representing and localizing stuck-at faults at the higher signal path level. On the basis of detected faulty signal paths,
suspected stuck-at faults at gate inputs are calculated, and then mapped into suspected design error(s). Using the stuck at
fault model allows to exploit standard gate-level automated test pattern generators (ATPG) for design error diagnosis.
Experimental data on wellknown benchmark circuits show the advantage of the proposed method compared to the
known algorithms of design error diagnosis.

INTRODUCTION
Design verification and design error localization in
digital systems are becoming more and more time
consuming tasks due to the fact that systems are
becoming continuously more complex.
Verification and error localization are traditionally
handled separately: for verification the methods of
simulation and tautology checking can be used, whereas
for error localization, after an error is detected, other
dedicated methods are introduced [1,2].
While a lot of work has been done in the field of test
synthesis and fault diagnosis in relation to fabrication
faults, very little has been done in the field of design
error diagnosis [1-5]. In [6] a new BDD technique has
been proposed, however the explosion of the complexity
for some classes of circuits puts practical limitations to
the use of BDDs in locating design errors. A brief
overview of currently available solutions to the
diagnosis problem has been given in [2].
The technique proposed in [1] assumes the existence of
a single gate error in the combinational circuit. Simple
gate errors are considered, and three error hypotheses
have been introduced. The diagnoser works successively
under one of these hypotheses. The reasoning will be
carried out at the plain gate level. A set of rules has been
developed for all procedures with gates concerning the
diagnostic reasoning as well as the creation of activated
paths through gates.
In [7,8] for solving the same problem as in [1], a new
model of structurally synthesized BDDs (SSBDD) [9]
was introduced which allowed to increase the speed in
error detection and localization. Differently from [1]
where only the diagnosis problem is formulated and
solved, in [7,8] the error detection and diagnosis are
handled as a joint task which allows to increase the
efficiency of error localization.
In this paper a new algorithm for hierarchical design
error diagnosis is presented which is based on general
ideas presented in [7,8], and in details describes the fault
calculation procedure.

The use of SSBDDs allows to develop efficient higher
than gate level fault reasoning procedures for increasing
the speed in fault simulation and fault diagnosis. On
SSBDDs, a primary set of suspected faulty signal paths
are calculated. Based on these paths, a list of suspected
faults is generated, which subsequently will be reduced
to the minimum by using the information obtained from
the test experiment.
The method is based on the stuck-at fault model, where
all the analysis and reasoning is carried out in terms of
stuck-at faults and only in the end, the result of
diagnosis will be mapped into the design error area.
Such a treatment allows to exploit traditional ATPGs to
serve the problem of design error diagnosis.
The paper is organized in the following manner. Section
2 presents the necessary definitions and terminology.
The use of stuck-at faults and mapping the diagnosis
results into the design error area are explained in Section
3, and representation of faults in the model is discussed
in Section 4. The new error diagnosis technique is
presented in Section 5. Experimental data are discussed
in Section 6, and finally, Section 7 presents some
conclusions.

DEFINITIONS AND TERMINOLOGY
Consider a circuit specification, and its implementation,
both at the Boolean level. The specification output is
given by a set of variables W = {w1 , w2 , ... , wm}, and
the implementation output is given by a set of variables
Y = {y1 , y2 , ... , ym}, where m is the number of outputs.
Let X = {x1,x2,...,xn} be the set of input variables. The
implementation is a gate network and Z is the set of
internal variables used for the connection of gates. The
gates implement simple Boolean functions AND,
NAND, OR, NOR and NOT. An additional gate type
FAN is added (one input, two or more outputs) to model
fanout points.
We use two different levels for representing the
network: gate and macro-level representations.
Let S be the set of variables in the implementation S =
Y ∪ Z ∪ X. Let XF and ZF be the subsets of inputs and

internal variables that fanout (they are input to a FAN
gate). Let ZFG be the subset of internal variables that are
output of a FAN gate. At the gate level, the network is
described by a set NG = {gk} of gate functions sk = gk
(sk

1, sk
2, ... ,sk

h) where sk ∈ Y ∪ Z, and sk
j ∈ Z ∪ (X -

XF). Let us introduce macro functions for representing
tree-like subcircuits. Then, at the macro-level, the
network is given by a set NF = {fk} of macro functions
sk = fk (sk

1, sk
2, ..., sk

p) where sk ∈ Y ∪ ZF, and sk
j ∈ ZFG

∪ (X - XF).
Definition 1. Test patterns. For a circuit with n inputs, a
test pattern is a n-bit vector which may be binary Bn or
ternary Tn, where B = {0,1} - the Boolean domain, T =
{0,1,U} - the ternary domain, where U - is a don’t care.
Definition 2. Stuck-at fault set. Let F be the set of stuck-
at faults s/1 and s/0, where s∈Z∪X.
Definition 3. Detecting stuck-at faults. A test pattern Ti
detects a stuck-at-e fault s/e, e ∈ {0,1} at the output yj, if
when applying the test pattern Ti to the implementation
and the specification, the result yj(Ti) ≠ wj (Ti) is
observed.
Definition 4. Stuck-at fault cover. The circuit is tested
completely by a test T = {T1, T2, ... Tt} for stuck-at
faults, iff T detects all the faults in F. The gate gk which
implements the function sk = gk (sk

1, sk
2, ... ,sk

h) is tested
by T for stuck-at faults, iff T detects both stuck-at-1 and
stuck-at-0 faults at all the gate inputs sk

j.
The stuck-at fault model does not have in this paper a
physical meaning. In reality, a design error is detected at
yj when under the application of a test Tk, a result yj (Tk)
≠ wj (Tk) is observed. Using the stuck-at fault model, we
only imitate the traditional testing by comparing the
behavior of the implementation and the specification as
a “golden device”. From tests that have shown an error,
we produce, as in the case of traditional testing, a
diagnosis in terms of stuck-at faults, which are then
mapped into design errors.
The following design error types are considered
throughout the paper in relation to gates gk ∈NG.
Definition 5. Gate replacement error. It denotes a
design error which can be corrected by replacing the
gate gi in NG with another gate gj , by gi → gj.
Definition 6. Extra/missing invertor error. It denotes a
design error which can be corrected by
removing/inserting an invertor at some input s ∈ X, or at
some fanout branch s ∈ ZFG : s → NOT(s).
Definition 7. Single error hypothesis. Our design error
diagnosis methodology is based on a single error
hypothesis where it is assumed that in the circuit a single
error from the following error types can exist: 1) an
extra/missing inverter, 2) an arbitrary gate replacement
between AND, OR, NAND, NOR gates.

MAPPING GATE STUCK-AT FAULTS
INTO DESIGN ERRORS

Theorem 1. To detect a design error in the
implementation at an arbitrary gate gk where sk = gk (s1,

s2,...,sh), it is sufficient to apply a pair of test patterns
which detect the stuck-at faults si /1 and si /0 at one of
the gate inputs si, i = 1,2, ... h.
The proof of the Theorem 1 is given in [7]. From the
proof the following set of corollaries was driven which
describes the mapping from a stuck-at fault diagnosis to
a design error diagnosis:
- localizing both the s/1 and s/0 faults on two or more
gate inputs refers to the missing/extra invertor at the gate
output, i.e. to the replacement errors: AND ↔ NAND
and OR ↔ NOR;
- localizing s/1 faults at one or more gate inputs refers to
the replacement errors: AND → OR, OR → NAND,
NAND → NOR, and NOR → AND;
- localizing s/0 faults at one or more gate inputs refers to
the replacement errors: AND → NOR, OR → AND,
NAND → OR, and NOR → NAND;
- localizing both the s/1 and s/0 faults at one of the gate
inputs si refers to the error si → NOT(si) at this input;
- localizing both the s-1 and s-0 faults at more than one
branch of a primary input si∈XF refers to the error si
→ NOT(si) at this input.
The mapping of stuck-at faults into simple gate design
errors can be represented by the following table.
TABLE 1

Stuck-at faults
Gate

s1 s2
Design error

 0 1 0 1 NAND
 1 1 OR

AND 0 0 NOR
 0 1 NOT(x1)
 0 1 NOT(x2)
 0 1 0 1 NOR
 0 0 AND

OR 1 1 NAND
 0 1 NOT(x1)
 0 1 NOT(x2)
 0 1 0 1 AND
 0 0 OR

NAND 1 1 NOR
 0 1 NOT(x1)
 0 1 NOT(x2)
 0 1 0 1 OR
 1 1 AND

NOR 0 0 NAND
 0 1 NOT(x1)
 0 1 NOT(x2)

MODELING STUCK-AT FAULTS AT
TWO DIFFERENT LEVELS
We now consider a fault modeling method which was
developed for macro-level test generation based on
using structurally synthesized BDDs (SSBDD) as the
model for tree-like subcircuits or macros [9,10].
Consider a given implementation as a network of
macros (tree-like subcircuits) NF={fk}, where each
macro implements a function sk = fk (sk

1, sk
2, ..., sk

p),
given in an equivalent parenthesis form (EPF) [10],
where the arguments sk

j ∈ Sk in the EPF are considered
as literals.

Definition 8. Signal paths. Let sk = fk(sk
1, sk

2, ..., sk
p) be

a macro implemented at the gate level, and Sk = {sk
1, sk

2,
..., sk

p} be its set of inputs. We denote L(sk
j) the set of

variables on a path from the input of the macro sk
j ∈ Sk

to its output sk.
As macros are trees, there exists a one-to-one
correspondence between inputs sk

j
 ∈ Sk and the gate-

level signal paths L(sk
j) in the macro. The literal sk

j in
the EPF is an inverted (not inverted) variable if the
number of invertors on the path from sk

j to sk is odd
(even).
Definition 9. Faults on signal paths. Let F(sk

j/e) where
e∈{0,1} be a set of all faults (a fault class) in the gate-
level signal path from the input sk

j of the macro Sk to its
output sk.
A fault sk

j/e can be regarded as the representative of the
fault class F(sk

j/e), since to test all the faults F(sk
j/e) it is

enough to test only the fault sk
j/e.

A SSBDD is a graph Gk with a set of nodes Mk, which
represents a macro fk so that one-to-one correspondence
exists between the nodes m∈Mk and signal paths L(s)
where s ∈ Sk [9,10]. Let s(m) denote the literal at the
node m in the graph Gk.
The procedure of formal synthesis of SSBDDs from
gate-level networks based on a graph superposition
procedure is considered in [7,8].

Fig.1. Combinational circuit

Example 1. Consider a combinational circuit in Fig.1
given as a Boolean function in an EPF as follows:

y = ((x1 ∧ x2,1) ∨ (¬x2,2 ∧ x3,1)) ∧ ((x3,2 ∧ ¬x4,1)
∨ (x4,2 ∧ x5)).

The circuit in Fig.1 is represented by a structurally
synthesized BDD in Fig.2. For simplicity, only indexes
of the variables s∈S at the nodes of the circuit and of the
SSBDD are shown.

Fig.2. SSBDD for the combinational circuit in Fig.1.

The one-to-one correspondence between the fault
classes F(s(m)/e), e∈{0,1}, on paths L(s(m)) in the
circuit, the representative faults s(m)/e, and nodes mi in
the SSBDD, is given in Table 2.
As an example, to test the node m3 in the SSBDD for a
fault ¬x2,2/0 (for stuck-at 1 at the branch x2,2 in Fig.1)
we activate the paths shown by bold arrows in SSBDD
(Fig.2) by the pattern x1=0,x2=0,x3=1,x4=0. This pattern
detects all the faults x2,2/1, x6/0, x9/0, x12/0, x14/0 on the
signal path (bold in Fig.1) from the input branch x2,2 to
the output y of the circuit . Note the change of the fault
type because of the invertor on the path.

TABLE 2
Nodes
of the

SSBDD

Faults
in the

SSBDD

Faults on the gate level
F(s(m)/e), e∈{0,1}

mi s(m)/e
m1 x1/e x1/e, x8/e, x12/e, x14/e
m2 x2,1/e x2,1/e, x8/e, x12/e, x14/e
m3 ¬x2,2/e x2,2/¬e, x6/e, x9/e, x12/e, x14/e
m4 x3,1/e x3,1/e, x9/e, x12/e, x14/e
m5 x3,2/e x3,2/e, x10/e, x13/e, x14/e
m6 ¬x4,1/e x4,1/¬e, x7/e, x10/e, x13/e, x14/e
m7 x4,2/e x4,2/e, x11/e, x13/e, x14/e
m8 x5/e x5/e, x11/e, x13/e, x14/e

DESIGN ERROR DIAGNOSIS AT PATH
AND GATE LEVELS

The test patterns generated by traditional gate-level
ATPGs for detecting the stuck-at faults in combinational
circuits can be used for diagnosing single gate design
errors. Assume we have generated a set of test patterns
T = {T1, T2, ... Tt} for detecting the stuck-at faults at
gate inputs and at the primary inputs of the circuit which
are fanouts.
Definition 10. Detectable faults. Let us call

F(Ti, y) = {sj /ej: Ti → (∂y/∂sj = 1) & (sj = ¬e) }⊆ F,
where sj∈S, a set of faults detectable by a test pattern Ti
at a primary output y ∈ Y.
Let us call

F(Ti) = ∪ y ∈ Y F(Ti, y)
a set of faults detectable by a test pattern Ti.
Denote the subset of primary outputs where an error has
been detected by applying the test pattern T i as

E (Ti) = {ykk: yk (Ti) ≠ wk (Ti), yk ∈ Y}⊆ Y.
Theorem 2. From failing of a test Ti, the following set of
suspected faults results

F*(Ti) = ∩ y∈ E(Ti) F(Ti, y) - ∪ y ∈Y- E(Ti) F(Ti, y).
Proof. The proof results from the single error
hypothesis. If an error has been detected at more than
one outputs y ∈ E(Ti) ⊆ Y then only a single fault can
be the cause of that. Therefore, only the intersection of
sets of suspected faults F(Ti, y) at erroneos outputs
y∈E(Ti) can contain the existing fault. On the other

AND

AND

AND

AND

OR

OR

AND

NOT

NOT

1
2

3

4

5

21

22

31

32
41

42

6

7

8

9

10

11

12

13

14

y

1 21

22 31

32

42

41

5

y # 1

0

m1 m2

m3 m4

m5 m6

m7 m8

hand, if some of these suspected faults from this
intersection have a direct impact to the outputs where no
error has been detected, they cannot be anymore
suspected. Therefore, the union of all F(Ti, y) for all
y∈Y-E(Ti) should be substracted from the intersection
of suspected faults observed at erroneos outputs
y∈E(Ti). ν
Theorem 3. From a set E of failing test patterns where

E = { Ti ∃j: Ti → (∂y/∂sj = 1) }⊆ T,
the following set of suspected faults results

F*(E) = ∪ Ti∈E [∩ y∈ E(Ti) F(Ti, y)] -
∪ Ti∈E [∪ y ∈Y- E(Ti) F(Ti, y)] - ∪ Ti∈F- E F(Ti)

Proof. The proof results again from the single error
hypothesis. From all the failing test patterns Ti ∈ E, a
suspected set

F‘(E) = ∪ Ti∈E [∩ y∈ E(Ti) F(Ti, y)]
of faults results.
On the other hand, since all the faults

F’’(E) = ∪ Ti∈E [∪ y∈Y- E(Ti) F(Ti, y)],
not detected by test patterns Ti ∈ E, and all the faults

F’’(F-E) = ∪ Ti∈F-E F(Ti)
not detected by test patterns Ti ∈ F-E, cannot be
suspected, we have to substract F’’(E) and F’’(F-E)
from F‘(E). ν
From Theorems 2 and 3 the following algorithm for
fault diagnosis results.
Algoritm 1.
1. Calculate F‘(E) = ∪ Ti∈E [∩ y∈ E(Ti) F(Ti, y)] as a set

of suspected faults.
2. Calculate F’’(E) = ∪ Ti∈E [∪ y∈Y- E(Ti) F(Ti, y)] as a

subset of not suspected faults.
3. Calculate F’’(F-E) = ∪ Ti∈F-E F(Ti) as another subset

of not suspected faults.
4. Calculate F*(E) = F’(E) - F’’(E) – F’’(F-E) as the

updated set of suspected faults.
For improving the resolution of diagnosis, the following
theorem can be used.
Theorem 4. If two test patterns T1 and T2 which detect
the both stuck-at faults s(m)/1 and s(m)/0 at the node m
in Gk, will not fail then all the gates along the path
L(s(m)) in the gate-implementation are free from design
errors.
The proof of the theorem is given in [7].
Example 2. Consider a test T with 8 patterns which are
applied to inputs of the circuit in Fig.1 described by
SSBDD in Fig.2. The test patterns Ti ∈T and the sets of
detectable faults F(Ti, yk) are described in Table 3. The
entries “1” or “0” in a columns i for s(mi) mean,
correspondingly, detection of the fault s(mi)/1 or s(mi)/0.
As we see, the test is complete, all the stuck-at faults in
the circuit are tested, and according to Theorem 4 this
test is able to detect all single gate design errors.

TABLE 3
Faults detected at i: s(mi) Ti

Test
pattern 1 2 3 4 5 6 7 8 E

T1 1110x 0 0 0 0 0
T2 0110x 1 1 1
T3 11011 0 0 0 0 0
T4 10011 1 1 1
T5 0010x 0 0 0 0 0
T6 11001 1 1 0
T7 11110 1 1 0
T8 00011 1 0

Suppose now, the test patterns T2 and T4 fail which
results in E={T2,T4}. From that, according to Algorithm
1, we create an initial subset of suspected representative
faults (high level diagnosis):

F’(E) = F(T2) ∪ F(T4) = {x1 /1, x2,2 /0, x2,1 /1, x3,1 /1}.
On the other side, since F’’(E) = ∅, the final set of
suspected representative faults is:

F*(E) = F’(E) – F’’(F-E) ={x1 /1, x2,1 /1, x2,2 /0}.
Going now over to the lower level fault representation,
we create from F*(E) according to Table 2, the
following initial subset of suspected gate-level stuck-at
faults (low level diagnosis):

F’(E) = {x1/1, x2,1/1, x2,2/0, x6/1, x8/1, x12/1, x14/1}.
Using again Algorithm 1 we reduce the suspected fault
set to as follows:
F*(E) = F’(E) - F’’(F-E) = {x1/1,x2,1/1,x2,2/0,x6/1,x8/1}.
Since the faults at x3,1 are missing, then according to
Theorem 4, the gates g9 and g12 are fault free, and
correspondingly, the faults x6/1 and x8/1 can not be any
more suspected. Hence, we remove them from F*(E).
Since the fault x2,2/0, according to the mapping rules in
Table 1, does not fit to any fault combination for the
NOT gate, the gate g6 is fault free, and we can remove
also this fault from F*(E).
From above, the final stuck-at fault diagnosis results:

F*(E) = {x1/1, x2,1,/1},
which according to Table 1 means the design error
AND8 → OR8. To correct the design, the gate AND8
(shaded in Fig. 1) should be replaced by gate OR.

EXPERIMENTAL DATA

For carrying out a set of design error diagnosis
experiments, internationally recognized ISCAS´85
benchmarks (columns 1,2,3,4 in Table 4) were used.
Test patterns for detecting stuck-at faults in these
circuits were created by the test generator described in
[10]. The fault coverage (column 6) of the tests and the
test generation time in seconds (column 11) are
presented in Table 4.
The goals of the experiments were twofold:
- to compare the efficiency (the speed of fault
localization) of the new diagnostic approach in
comparison with previous results [1,2];

TABLE 4

Number of Suspected Erroneous
Gates Time,s

Number
Circuit
Name Inputs Outputs Gates Experi-

ments

Fault
Coverage,

%
Min Max Av.

Av. %
of

Total

Test
Gene-
ration

Fault
Analysis
(average)

Total

Time
for [1],

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14
c432 36 7 232 671 91,07 1* 107 8,9 3,82 0,79 0,1 0,9 17,57
c499 41 32 618 1622 99,33 1 307 76,5 12,38 1,01 1,4 2,4 111,64
c880 60 26 357 1144 100 1 33 6,2 1,73 0,19 0,5 0,7 126,79

c1355 41 32 514 1830 99,51 1 248 58,4 11,37 1,35 1,5 2,9 241,79
c1908 33 25 718 1922 99,31 1 76 11,1 1,55 0,93 1,6 2,5 341,92
c2670 233 140 997 997* 94,97 1* 161 25,4 2,55 3,55 14,1 17,7 661,91
c3540 50 22 1446 1446* 95,27 1* 86 10,1 0,70 3,08 3,7 6,8 1513,82
c5315 178 123 1994 1994* 98,69 1* 239 11,1 0,56 2,38 29,4 31,8 1814,04
c6288 32 32 2416 2416* 99,34 1* 138 8,4 0,35 2,17 2,7 4,9 1895,90
c7552 207 108 2978 2978* 95,95 1* 269 16,0 0,54 12,06 44,8 56,9

- to evaluate the design error diagnostic properties of
test patterns generated by traditional gate-level ATPGs
for only stuck-at fault detecting purposes.
Experiments were carried out on the computer platform
Sun SparcServer 20 (2 x Ultra Sparc II micro-
processors, 75MHz) with Solaris 2.5.1 OS.
The number of experiments carried out for each circuit
are shown in the column 5. For the cases marked by
star (*), one random error for each gate was inserted,
for other cases, all possible single gate errors were
simulated and analysed.
TABLE 5

Suspected Erroneous
Area

Number
Circuit
Name

Level of
Abstraction Total

Min Max Av.
Av. %

of Total

Nodes 601 2 365 93,0 15,47 c499
Gates 618 1 307 76,5 12,38
Nodes 866 1 131 17,5 2,02 c1908
Gates 718 1 76 11,1 1,55

The efficiency in the speed of diagnosis (columns 11,
12, 13) are compared to the results of [1,2] (column
14). The total time of diagnosis (column 13) in this
paper consists of two components: test generation time
(column 11) and fault diagnosis (column 12).
However, it should be noted that in this paper the
diagnostic resolution can not be compared with the one
in [1,2] because the test patterns were originally not
generated for diagnostic purposes. The numbers in
columns 7, 8, and 9 show, correspondingly, the
minimum, maximum and average diagnostic resolutions
(numbers of suspected gates) reached by the tests.
In the cases marked by star (*) in column 7, some
design errors were not detected at all (as the test
patterns were not generated with dignosis purposes).
In Table 5, the diagnostic resolutions for two
benchmark circuits (with the best and worst diagnostic
resolutions) are shown for both higher and lower
representation levels. The diagrams in Fig. 3 and 4

show, correspondingly, the distribution of experiments
with different diagnostic resolutions (the best case for
the circuit c1908, and the worst case for the circuit
c499).

Fig.3. Distribution of diagnostic resolutions over all
possible error cases for the circuit c1908.

Fig.4. Distribution of diagnostic resolutions over all
possible error cases for the circuit c499.

To reach the same high resolution of [1,2], additional
test patterns should be generated. For this purpose, the
same method of [1,2] can be used. Since the suspected
area (column 10) for diagnostic search is reduced from
100% to from 0,35% (in the best case) to 12,38% (in
the worse case), the combination of both methods – the

3,70 3,88

47,72

13,26
5,49 4,13

1,853,644,93
11,41

0,00

10,00

20,00

30,00

40,00

50,00

60,00

5 10 15 20 25 30 35 40 45 50
Number of Suspected Gates

(% of total number)

Fr
ac

tio
n

of
 E

xp
er

im
en

ts
 (%

)

7,23

23,73

1,82 0,523,64
3,07

2,86

55,62

1,20 0,00
0,31

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4 5 6 7 8 9 10 11
Number of Suspected Gates

(% of total number)

Fr
ac

tio
n

of
 E

xp
er

im
en

ts
 (%

)

one proposed in the present paper and the other one
presented in [1,2] can reach significant improvements
compared to using only the method [1,2].
A very interesting result is that in 30% cases (c499,
c1355, c1908) the tests with lower than 100% stuck-at
fault coverage detected all possible single gate design
errors. The reason lies in the mapping mechanism
explained in Table 1 where each design error is mapped
into a subset of at least two stuck-at faults.
The method proposed in the paper has the following
advantages compared to the previous results[1,2]:
1. The whole procedure takes place hierarchically at
three different levels: macro level (for error detection
and for localization of the erroneos macro), gate level
(for localization of the node related to the site of the
design error), and “stuck-at fault to design error
mapping” level for exact specification of the design
error. Exploiting the hierarchy allows to combine the
efficiency of working at the higher level (for error
detecting) with the accuracy (needed for error
diagnosis) at the lower level.
2. Working with the stuck-at fault model allows to base
on a single error hypothesis, which actually means
working with all the three hypothesis from [1,2] in
parallel.

CONCLUSIONS
In this paper, a new approach to diagnosis of design
errors is presented to automatically diagnose single
design errors in combinational circuits.
The main original features of the method are:
- the hierarchical approach, based on using

structurally synthesized BDDs,
- the use of very powerful error detection and fault

localization procedures based on SSBDDs, and
- the idea of mapping stuck-at fault diagnosis into

the final localization of the design error.
The latter allows to use the test patterns and fault tables
generated for stuck-at faults to produce design error
diagnosis.
Experimental data are provided for showing the
efficiency of the method.
The future research in this field is directed to the case
of multiple design errors and to the case of complex
gates. The use of word level DDs seems to be very
efficient in design error diagnosis at higher functional
levels like RTL or behavioral ones.

Acknowledgements – This work has been supported
by the COPERNICUS project No 977133 VILAB and
by the Estonian Science Foundation grant G-1850.

Authors appreciate the work of Jaan Raik for helping
to carry out the experimental work.

THE AUTHORS
Prof. Raimund Ubar and Artur Jutman are with the
Computer Engineering Department of Tallinn
Technical University, Raja 15, 12617 Tallinn,
ESTONIA. E-mail: raiub@pld.ttu.ee.

REFERENCES
[1] A.M. Wahba, D. Borrione. A Method for
Automatic Design Error Location and Correction in
Combinational Logic Circuits. Journal of Electronic
Testing: Theory and Applications 8, 1996, pp. 113-
127.
[2] A.M. Wahba. Diagnostic des Erreurs de Coception
dans les Circuits Digitaux: le Cas des Erreurs Simples.
The Thesis of PhD Dissertation. UJF/TIMA, Grenoble,
1997, 156 p.
[3] K.A. Tamura. Locating Functional Errors in Logic
Circuits. Proc. 26th Design Automation Conf., 1989,
pp. 185-191.
[4] J.C. Madre, O.Coudert, J.P.Billon. Automating the
Diagnosis and the Rectification of Design Errors with
PRIAM. Proc. ICCAD’89, 1989, pp.30-33.
[5] M. Tomita, T.Yamamoto, F.Sumikawa, K.Hirano.
Rectification of Multiple Logic Design Errors in
Multiple Output Circuits. Proc. 31st Design
Automation Conf., 1994, pp. 212-217.
[6] P.Y. Chung, Y.M. Wang, I.N. Hajj. Diagnosis and
Correction of Logic Design Errors in Digital Circuits.
Proc. 30th Design Automation Conf., 1993, pp. 503-
508.
[7] R.Ubar, D.Borrione. Localization of Single Gate
Design Errors in Combinational Circuits by Diagnostic
Information about Stuck-at Faults. Proc. of the 2nd Int.
Workshop on Design and Diagnostics of Electronic
Circuits and Systems. Szczyrk, Poland, Sept. 2-4, 1998,
pp.73-79.
[8] R.Ubar, D.Borrione. Generation of Tests for
Localization of Single Gate Design Errors in
Combinational Circuits Using the Stuck-at Fault
Model. Proc. of the 11th IEEE Brasilian Symp. on IC
Design. Rio de Janeiro, Brazil, Sept. 30 - Oct. 3, 1998,
pp.51-54.
[9] R. Ubar. Test Synthesis with Alternative Graphs
(R.Ubar). IEEE Design and Test of Computers. Spring,
1996, pp.48-59.
[10] J.Raik, R.Ubar. Feasibility of Structurally
Synthesized BDD Models for Test Generation. Proc. of
the IEEE European Test Workshop, Barcelona, May
27-29, 1998, pp.145-146.

mailto:raiub@pld.ttu.ee

