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Abstract 

Current paper presents a new technique for static 
compaction of sequential circuit tests that are divided into 
independent test sequences. The technique implements 
effective representation of fault matrices by weighted 
bipartite graphs. The approach contains a preprocessing 
step for determining the set of essential vectors. 
Subsequently, implications and a greedy search algorithm 
is applied. The proposed method offers significantly 
faster performance in terms of run times than earlier, 
genetic algorithm based methods. Moreover, the average 
compaction provided by current method is better.  

1 Introduction 
Minimization of the number of patterns in a test set is 

an essential problem for the chip manufacturer, who faces 
the test of millions of units per annum [1]. The time 
required to test a chip by the ATE is directly proportional 
with the length of the test sequence. Therefore, the 
number of patterns in a test set is an important parameter 
when speaking of test pattern generation. Minimization of 
this number is refered to as test sequence compaction. 

There exist two types of test compaction techniques: 
static and dynamic. In static compaction [2, 3, 4, 5], a test 
sequence is generated and subsequently attempts are 
made to shorten it without reducing its fault coverage. 
The main advantage of the static techniques is that they 
are independent of the adopted ATPG tool. Dynamic test 
set minimization [5, 6, 7], on the other hand, is performed 
at the time when tests are being generated. This requires 
modification of the test generation algorithm itself in 
order to make it generate shorter sequences.  

Many of the works in the field of static compaction [2, 
4] consider the case, where there is a single test sequence 
that we are trying to minimize by removing some patterns 
from it. This requires iterative fault simulation during the 
compaction process in order to check that the fault 
coverage has not decreased. Thus the run times are very 
long.  

Faster approach has been proposed in [3] and in [5]. 
The technique in [5] requires keeping track of the internal 
state of the circuit. In [3] the whole test set is divided into 
independent test sequences separated by global reset and 
fault simulation is performed only once, prior to 
compaction. In addition, in [3] a set of benchmarks [9] 
consisting of 103 fault matrices of ISCAS89 circuits 

tested by three different ATPG tools [10, 11, 12] were 
made publicly available.  

In this paper we target the above mentioned case of 
static compatcion where the test set is divided into test 
sequences. We propose a technique that uses an effective 
representation of fault matrices by weighted bipartite 
graph models which provide for a more compact means of 
describing the test sets than traditional matrix 
representations. It contains a preprocessing step for 
determining the set of essential vectors of the test 
sequences. This step considerably reduces the search 
space for the compaction algorithm. Subsequent to 
preprocessing, search space pruning and a greedy search 
algorithm are applied in order to compact the test set.  

2 Model representation and basic definitions  
Consider the test set example shown in Figure 1 that 

consists of three test sequences s1, s2 and s3, respectively. 
Sequence s1 consists of four test vectors covering fault f2 
at the third vector and f1 at the fourth vector. Sequence s2 
consists of three test vectors covering f1 at the first vector 
and f3 at the third vector. Finally, sequence s3 consists of 
four test vectors covering f2 at the first vector, f3 at the 
second vector and f4 at the fourth vector.  

Initial test length of this test set is 11 vectors. It can be 
found that the optimal solution for the static compaction 
problem is selecting sequence s3 and the first vector from 
sequence s2. Hence, the length of the optimal compacted 
test set will be 5 vectors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Test set example 
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In current implementation the test set information is 
represented by a model of weighted bipartite graphs. The 
motivation for this is the fact that bipartite graph models 
generally provide for a much more compact means of 
describing the test sets than matrix representations. We 
use a weighted bipartite graph Gn,m, where the first part 
of the graph consists of n vertices that correspond to test 
sequences si and the remaining part has m vertices 
corresponding to the faults fj detected by the test set. 
There exists an edge connecting vertices si and fj iff 
sequence si covers fault fj. Edge e = <si, fj> is labeled by 
an integer c, c = w(e), where fault fj is covered at the c-th 
vector of test sequence si.  

The weighted bipartite graph representation for the test 
set in Fig. 1 is shown in Fig. 2. 

 
 

 
 
 
 
 
 
 
 

Figure 2. Weighted bipartite graph 
 

However, for the sake of simplicity, in the following 
algorithm descriptions we will represent the test set by a 
matrix, where the rows correspond to sequences and 
columns correspond to faults [3]. The fault matrix 
representation for the test set in Fig. 1 is shown below. 

 f1 f2 f3 f4 
s1 4 3 0 0 
s2 1 0 3 0 
s3 0 1 2 4 

 In this type of descriptions test set T consisting of n 
faults and m test sequences can be viewed as a matrix 
 
 
 
                                                                             , 
 
 
 
where tsi,fj is equal to k if sequence si covers fault fj at the 
k-th vector and zero if sequence si does not cover fault fj.  
 If we select k vectors from sequence si then all the 
faults {fj : k ≥ tsi,fj > 0} are said to be covered by these 
vectors. In our algorithm we remove the columns 
corresponding to the covered faults from matrix T. In 
addition, we must subtract k from all the non-zero 
elements tsi,fj of the row corresponding to the sequence si. 
 Our task is to cover all the faults (i.e. columns of 
matrix T) by selecting the minimal number of vectors. As 
it was shown in [3], this task belongs to the class of NP-
complete problems.  

3 Compaction algorithm 
 A simple pre-processing step of detecting essential 
vectors from the test sequences is applied at the beginning 
of the compaction algorithm. If fault fj is detected by the 
k-th vector of test sequence si and is not detected by any 
other sequence then k first vectors of sequence si are 
called essential. After selecting the essential vectors we 
remove them from the test sequences. In addition we 
remove the columns corresponding to faults covered by 
these vectors from matrix T. This simple pre-processing 
step allows to significantly reduce the search space for the 
static compaction algorithm. 
 In addition to selecting the set of essential patterns, two 
other types of implications are made. These are collapsing 
of equivalent faults and removing subrows, respectively. 
During collapsing of equivalent faults, column fa will be 
removed from matrix T if there exists another column fb, 
where 
 
In other words, if we have multiple identical columns we 
will unite them into a single one. 
 Another type of implications is removing subrows. A 
row corresponding to sequence sb is said to be a subrow 
of sa iff 
  
 Current technique applies above described implications 
as far as possible. When it encounters a selection between 
alternative solutions, it switches to a greedy algorithm 
[13]. The greedy selection function implemented in 
current technique is described in the following. Let us 
denote by Minrange(fj) the minimal number of vectors 
that has to be selected from any test sequence in order to 
detect a fault fj. Let Maxrange be the maximum 
Minrange(fj) of all the faults. 
 
 
 
 
 The selection function selects Maxrange vectors from 
the corresponding test sequence. If there exist multiple 
maximal Minrange(fj) values then the algorithm prefers 
the sequences that detect more faults in Maxrange first 
vectors. In the following the description of the algorithm 
for static compaction is presented: 

Select essential vectors. 
Remove the faults covered by these vectors. 
While exist uncovered faults 
{ 
 Remove subrows. 
 Collaps equivalent faults. 
 If new essential vectors appeared then 
  Select essential vectors. 
 Else 
  Select vectors by greedy selection. 
   Endif 
   Remove the faults covered by selected vectors. 
}  
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4 Detecting lower bounds and global optima  
 Since the algorithm described in the previous section is 
using implications, it allows it to calculate the lower 
bounds for the static compaction task. The meaning of the 
lower bounds is that they show that it is not possible to 
compact the test set to contain fewer vectors than the 
bound. Moreover, in the cases where the result found by 
the algorithm equals the lower bound we have proved that 
this result is the global optimum. 
 In current approach, the lower bound is determined by 
our technique with the number of vectors selected during 
the implications up to the first greedy selection, including 
the vectors chosen by that selection. The first greedy 
selection can be included due to the fact that, obviously, 
it represents the minimal number of vectors that are 
necessary in order to cover a previously uncovered fault 
fj. All the alternative combinations of selecting vectors 
for covering fj must always result in a greater or equal 
number of vectors. 

5 Experimental results 
 Both, the experiments of current approach and the 
comparative experiments of [3] were run on SUN 
SPARC 5 computer. We used the test set benchmarks that 
can be downloaded from [9]. The benchmarks include 
test sets for three different ATPG tools: GATTO [10], 
HITEC [11] and SYMBAT [12]. GATTO is a genetic 
algorithm based ATPG, HITEC is a deterministic gate-
level ATPG and SYMBAT is based on symbolic test 
generation techniques.  

Experiments show that current technique offers 16,7 - 
294 times shorter CPU times and is in average 74,3 times 
faster than the method implemented in [3]. The run time 
statistics for test set benchmarks of different ATPG tools 
are presented in Table 1. 
Table 1. Speed-up in comparison to [3] 

Speed-up, times Average Max Min 
GATTO test sets 77.1 218.2 16.7 
HITEC test sets 83.1 294.1 20.0 
SYMBAT sets 54.3 200.0 22.0 

 
 Figure 3 and Table 2 show the average compaction 
achieved by current approach in comparison to 
compaction of [3] and the theoretical lower bound 
calculated by current technique. As it can be seen from 
the Table, compaction of this technique is in average 
better than the one of [3] for all the ATPG test sets. In the 
case of HITEC and SYMBAT the technique allows much 
closer to optimum results than reported in [3]. These 
results are very near to the calculated lower bound. 
Table 2. Average compaction of test sequences 
 GA [3] curr. appr. bound 
GATTO test sets 49.86 % 50.06 % 51.28 % 
HITEC test sets 43.30 % 43.98 % 44.15 % 
SYMBAT sets 38.30 % 38.33 % 38.35 % 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Comparison of average compaction 
 

Conclusions 
 In this paper, the case of static compaction where the 
test set is divided into test sequences is considered. A new 
technique is proposed that allows better compaction than 
any previously published method belonging to this 
particular class. Moreover, experiments show that the 
technique offers 16.7-294 times shorter CPU times and is 
in average 74.3 times faster than the method in [3]. 
 Unlike previously published approaches, this technique 
is capable of detecting and proving globally optimal 
results for most of the benchmark test sets in [9]. Global 
optima are proved for 50 % of GATTO test sets, 82.5 % 
of HITEC test sets and 91.3 % of SYMBAT test sets 
using this approach.  
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