
Fast Static Compaction of Test Sequences using Implications and Greedy Search

J. Raik, A. Jutman, R. Ubar
Tallinn Technical Univ., Raja 15, 12618 Tallinn, Estonia, E-mail: {jaan|artur|raiub}@pld.ttu.ee

Abstract

Current paper presents a new technique for static
compaction of sequential circuit tests that are divided into
independent test sequences. The technique implements
effective representation of fault matrices by weighted
bipartite graphs. The approach contains a preprocessing
step for determining the set of essential vectors.
Subsequently, implications and a greedy search algorithm
is applied. The proposed method offers significantly
faster performance in terms of run times than earlier,
genetic algorithm based methods. Moreover, the average
compaction provided by current method is better.

1 Introduction
Minimization of the number of patterns in a test set is

an essential problem for the chip manufacturer, who faces
the test of millions of units per annum [1]. The time
required to test a chip by the ATE is directly proportional
with the length of the test sequence. Therefore, the
number of patterns in a test set is an important parameter
when speaking of test pattern generation. Minimization of
this number is refered to as test sequence compaction.

There exist two types of test compaction techniques:
static and dynamic. In static compaction [2, 3, 4, 5], a test
sequence is generated and subsequently attempts are
made to shorten it without reducing its fault coverage.
The main advantage of the static techniques is that they
are independent of the adopted ATPG tool. Dynamic test
set minimization [5, 6, 7], on the other hand, is performed
at the time when tests are being generated. This requires
modification of the test generation algorithm itself in
order to make it generate shorter sequences.

Many of the works in the field of static compaction [2,
4] consider the case, where there is a single test sequence
that we are trying to minimize by removing some patterns
from it. This requires iterative fault simulation during the
compaction process in order to check that the fault
coverage has not decreased. Thus the run times are very
long.

Faster approach has been proposed in [3] and in [5].
The technique in [5] requires keeping track of the internal
state of the circuit. In [3] the whole test set is divided into
independent test sequences separated by global reset and
fault simulation is performed only once, prior to
compaction. In addition, in [3] a set of benchmarks [9]
consisting of 103 fault matrices of ISCAS89 circuits

tested by three different ATPG tools [10, 11, 12] were
made publicly available.

In this paper we target the above mentioned case of
static compatcion where the test set is divided into test
sequences. We propose a technique that uses an effective
representation of fault matrices by weighted bipartite
graph models which provide for a more compact means of
describing the test sets than traditional matrix
representations. It contains a preprocessing step for
determining the set of essential vectors of the test
sequences. This step considerably reduces the search
space for the compaction algorithm. Subsequent to
preprocessing, search space pruning and a greedy search
algorithm are applied in order to compact the test set.

2 Model representation and basic definitions
Consider the test set example shown in Figure 1 that

consists of three test sequences s1, s2 and s3, respectively.
Sequence s1 consists of four test vectors covering fault f2
at the third vector and f1 at the fourth vector. Sequence s2
consists of three test vectors covering f1 at the first vector
and f3 at the third vector. Finally, sequence s3 consists of
four test vectors covering f2 at the first vector, f3 at the
second vector and f4 at the fourth vector.

Initial test length of this test set is 11 vectors. It can be
found that the optimal solution for the static compaction
problem is selecting sequence s3 and the first vector from
sequence s2. Hence, the length of the optimal compacted
test set will be 5 vectors.

Figure 1. Test set example

f4

f3 s3

s1

s2

f2

f1
f2

f1
f3

sequence

sequence

sequence

detected
faults:

mailto:@pld.ttu.ee

In current implementation the test set information is
represented by a model of weighted bipartite graphs. The
motivation for this is the fact that bipartite graph models
generally provide for a much more compact means of
describing the test sets than matrix representations. We
use a weighted bipartite graph Gn,m, where the first part
of the graph consists of n vertices that correspond to test
sequences si and the remaining part has m vertices
corresponding to the faults fj detected by the test set.
There exists an edge connecting vertices si and fj iff
sequence si covers fault fj. Edge e = <si, fj> is labeled by
an integer c, c = w(e), where fault fj is covered at the c-th
vector of test sequence si.

The weighted bipartite graph representation for the test
set in Fig. 1 is shown in Fig. 2.

Figure 2. Weighted bipartite graph

However, for the sake of simplicity, in the following
algorithm descriptions we will represent the test set by a
matrix, where the rows correspond to sequences and
columns correspond to faults [3]. The fault matrix
representation for the test set in Fig. 1 is shown below.

 f1 f2 f3 f4
s1 4 3 0 0
s2 1 0 3 0
s3 0 1 2 4

 In this type of descriptions test set T consisting of n
faults and m test sequences can be viewed as a matrix

 ,

where tsi,fj is equal to k if sequence si covers fault fj at the
k-th vector and zero if sequence si does not cover fault fj.
 If we select k vectors from sequence si then all the
faults {fj : k ≥ tsi,fj > 0} are said to be covered by these
vectors. In our algorithm we remove the columns
corresponding to the covered faults from matrix T. In
addition, we must subtract k from all the non-zero
elements tsi,fj of the row corresponding to the sequence si.
 Our task is to cover all the faults (i.e. columns of
matrix T) by selecting the minimal number of vectors. As
it was shown in [3], this task belongs to the class of NP-
complete problems.

3 Compaction algorithm
 A simple pre-processing step of detecting essential
vectors from the test sequences is applied at the beginning
of the compaction algorithm. If fault fj is detected by the
k-th vector of test sequence si and is not detected by any
other sequence then k first vectors of sequence si are
called essential. After selecting the essential vectors we
remove them from the test sequences. In addition we
remove the columns corresponding to faults covered by
these vectors from matrix T. This simple pre-processing
step allows to significantly reduce the search space for the
static compaction algorithm.
 In addition to selecting the set of essential patterns, two
other types of implications are made. These are collapsing
of equivalent faults and removing subrows, respectively.
During collapsing of equivalent faults, column fa will be
removed from matrix T if there exists another column fb,
where

In other words, if we have multiple identical columns we
will unite them into a single one.
 Another type of implications is removing subrows. A
row corresponding to sequence sb is said to be a subrow
of sa iff

 Current technique applies above described implications
as far as possible. When it encounters a selection between
alternative solutions, it switches to a greedy algorithm
[13]. The greedy selection function implemented in
current technique is described in the following. Let us
denote by Minrange(fj) the minimal number of vectors
that has to be selected from any test sequence in order to
detect a fault fj. Let Maxrange be the maximum
Minrange(fj) of all the faults.

 The selection function selects Maxrange vectors from
the corresponding test sequence. If there exist multiple
maximal Minrange(fj) values then the algorithm prefers
the sequences that detect more faults in Maxrange first
vectors. In the following the description of the algorithm
for static compaction is presented:

Select essential vectors.
Remove the faults covered by these vectors.
While exist uncovered faults
{
 Remove subrows.
 Collaps equivalent faults.
 If new essential vectors appeared then
 Select essential vectors.
 Else
 Select vectors by greedy selection.
 Endif
 Remove the faults covered by selected vectors.
}





















=

mnmm

n

n

sfsfsf

sfsfsf

sfsfsf

ttt

ttt
ttt

T

,,,

,,,

,,,

...
............

...

...

21

22221

11211

.,,1 ibia sfsf

m

i
tt =∀

=

.,00 ,,,,1 jbjajajb fsfsfsfs

n

j
tttt ≤≠⇒≠∀

=

1
4 4

2
3 3 1

s1 s2 s3

f1 f2 f3 f4

)}.({max

}.0:{min)(

1

,,1

j

n

j

fsfs

m

ij

fMinrangeMaxrange

ttfMinrange
jiji

=

=

=

≠=

4 Detecting lower bounds and global optima
 Since the algorithm described in the previous section is
using implications, it allows it to calculate the lower
bounds for the static compaction task. The meaning of the
lower bounds is that they show that it is not possible to
compact the test set to contain fewer vectors than the
bound. Moreover, in the cases where the result found by
the algorithm equals the lower bound we have proved that
this result is the global optimum.
 In current approach, the lower bound is determined by
our technique with the number of vectors selected during
the implications up to the first greedy selection, including
the vectors chosen by that selection. The first greedy
selection can be included due to the fact that, obviously,
it represents the minimal number of vectors that are
necessary in order to cover a previously uncovered fault
fj. All the alternative combinations of selecting vectors
for covering fj must always result in a greater or equal
number of vectors.

5 Experimental results
 Both, the experiments of current approach and the
comparative experiments of [3] were run on SUN
SPARC 5 computer. We used the test set benchmarks that
can be downloaded from [9]. The benchmarks include
test sets for three different ATPG tools: GATTO [10],
HITEC [11] and SYMBAT [12]. GATTO is a genetic
algorithm based ATPG, HITEC is a deterministic gate-
level ATPG and SYMBAT is based on symbolic test
generation techniques.

Experiments show that current technique offers 16,7 -
294 times shorter CPU times and is in average 74,3 times
faster than the method implemented in [3]. The run time
statistics for test set benchmarks of different ATPG tools
are presented in Table 1.
Table 1. Speed-up in comparison to [3]

Speed-up, times Average Max Min
GATTO test sets 77.1 218.2 16.7
HITEC test sets 83.1 294.1 20.0
SYMBAT sets 54.3 200.0 22.0

 Figure 3 and Table 2 show the average compaction
achieved by current approach in comparison to
compaction of [3] and the theoretical lower bound
calculated by current technique. As it can be seen from
the Table, compaction of this technique is in average
better than the one of [3] for all the ATPG test sets. In the
case of HITEC and SYMBAT the technique allows much
closer to optimum results than reported in [3]. These
results are very near to the calculated lower bound.
Table 2. Average compaction of test sequences
 GA [3] curr. appr. bound
GATTO test sets 49.86 % 50.06 % 51.28 %
HITEC test sets 43.30 % 43.98 % 44.15 %
SYMBAT sets 38.30 % 38.33 % 38.35 %

Figure 3. Comparison of average compaction

Conclusions
 In this paper, the case of static compaction where the
test set is divided into test sequences is considered. A new
technique is proposed that allows better compaction than
any previously published method belonging to this
particular class. Moreover, experiments show that the
technique offers 16.7-294 times shorter CPU times and is
in average 74.3 times faster than the method in [3].
 Unlike previously published approaches, this technique
is capable of detecting and proving globally optimal
results for most of the benchmark test sets in [9]. Global
optima are proved for 50 % of GATTO test sets, 82.5 %
of HITEC test sets and 91.3 % of SYMBAT test sets
using this approach.

References
[1] K. M. Thomson, "Intel and the myths of test". IEEE

Design & Test of Computers, Spring 1996, pp. 79-81.
[2] I. Pomeranz, S. M. Reddy, "On static compaction of test

sequences …". Proc. Design Automation Conf. , 1996.
[3] F. Corno, et al., "New static compaction techniques of test

sequences for sequential circuits". ED&TC, 1997.
[4] I. Pomeranz, S. M. Reddy, "Vector restoration based static

compaction …". Proc. of ICCD, 1997.
[5] M.S. Hsiao et al., "Fast static compaction algorithms …".

IEEE Trans. Comp., Vol. 48, No. 3, 1999.
[6] P. Goel, B. C. Rosales, "Test generation and dynamic

compaction of tests". Digest of Papers Test Conf., 1979.
[7] I. Pomeranz, S. M. Reddy, "Dynamic test compaction …".

IEEE Fault Tolerant Computing Symp. , 1996.
[8] E. M. Rudnick, J. H. Patel, "Putting the squeeze on test

sequences". Proc. of ITC, 1997, pp. 723-732.
[9] URL: http://www.cad.polito.it
[10] F. Corno, et al., "GATTO: A genetic algorithm for ATPG

… ", IEEE Trans. CAD, Aug. 1996.
[11] T.M. Niermann, J.H. Patel, "HITEC: A test generation

package for sequential circuits", Proc. of EDAC, 1991.
[12] G. Cabodi, F. Corno, P. Prinetto, M. Sonza Reorda,

"Symbat’s user guide", Politecnico di Torino, 1993.
[13] J. Edmonds, "Matroids and the greedy algorithm". Mathematical

Programming, Vol. 1, 1971, pp. 127-136.

GA

Current
approach

Lower bound

38,30

38,34

0,0

38,32

GA

Current

approach

Lower bound

A
ve

ra
ge

 c
om

pa
ct

io
n,

 %

0,0

50,0

50,5

51,0

Lower
boundCurrent

approach

GA

0,0

43,5

44,0

GATTO tests HITEC tests SYMBAT tests

http://www.cad.polito.it

