
SSBDD Model: Advantageous Properties and
Efficient Simulation Algorithms

A. Jutman, J. Raik, R. Ubar
Tallinn Technical University, Estonia, artur@pld.ttu.ee

Abstract – In this paper we describe general properties of
Structurally Synthesized Binary Decision Diagrams (SSBDDs)
[1], which make SSBDDs very efficient for application in various
structure dependent methods and algorithms. In addition, we
describe four recently proposed efficient simulation methods of
different classes: logic simulation, multi-valued simulation,
timing simulation, and fault simulation. We investigate and show
the origins of their common advantages and draw conclusions,
which hold for all the described algorithms. The experiments
conducted on ISCAS’85 benchmarks unveil also some new
properties of these circuits, which we present in our paper.

SSBDD Model. This model has several critical features
making it very attractive compared to other commonly used
mathematical models, such as ROBDD [2] or a gate-level netlist.
First of all, the worst case complexity (time) of generating
SSBDD model from a circuit’s netlist is linear in respect to the
number of logic gates, while it is exponential for ROBDDs.
Secondly, the size of the SSBDD model is linear in respect to the
circuit size (again, ROBDD can be of exponential size). Thirdly,
SSBDD model preserves structural information about the circuit
while other BDD models do not. And finally, it reduces model
complexity compared to the gate-level representation, as
algorithms running on SSBDDs need no separate treatment of
gates of different types (e.g. AND and OR gates are treated
equally). Moreover, instead of considering each gate separately, it
deals with macros – tree-like subcircuits (i.e. subcircuits with no
re-convergent fanouts), which usually consist of several gates.
Each single node in an SSBDD, thus, represents a whole signal
path from a macro input to the output of the macro. This is the
most significant feature, which allows development of efficient
logic-level simulation algorithms. This feature provides also fault
collapsing for fault simulation.

Due to the above mentioned advantages the SSBDD model
has been proposed for various CAD problems like fast
deterministic test pattern generation, efficient design error
localization, logic and multi-valued simulation [3], timing
simulation [4], fault simulation [5], delay fault analysis, and fault
cover analysis in dynamic testing.

A BDD that represents a Boolean function y=f(X) over a set
of Boolean variables X={x1,x2, … , xn} is a directed acyclic graph
Gy=(M,Γ,X) with a set of nodes M and mapping Γ from M to M.
M consists of two types of nodes: non-terminal MN and terminal
MT. A terminal node mT is labeled by a constant e∈{0,1}, while
all non-terminal nodes are labeled by variables x∈X, and have
exactly two successor nodes. Let us denote the associated with
node m variable as x(m), then m0 is the successor of m for the
value x(m)=0 and m1 is the successor of m for the value x(m)=1.

SSBDD model is not a canonical model. In spite of this, as we
will see later, it is a natural BDD representation of a digital
circuit. It does not rely on the Shannon decomposition. As the
basis, it uses the equivalent parenthesis form (EPF), that is,
describes a digital circuit structurally. A BDD is called SSBDD, if
there is a one-to-one correspondence between non-terminal nodes
of the BDD and signal paths in the combinational circuit. Non-
terminal nodes of an SSBDD are labeled by subscripted input
variables, which can be inverted or not. An SSBDD is constructed
directly from a gate-level description of a combinational circuit
by a graph superposition procedure. In this sense it is equivalent

to EPF generation by superposition of Boolean functions. In prior
to the superposition the circuit must be partitioned into a set of
tree-like fanout-free subcircuits. Each such subcircuit will be
represented by its own SSBDD. Therefore the whole circuit is
represented not by a single SSBDD but by a set of separate
SSBDDs connected by variables from extended set X.

Fig. 1 and Fig. 2 illustrate how an SSBDD is constructed from
a combinational circuit and how two different SSBDDs can
represent a single circuit. For SSBDDs, it is agreed that the edge
corresponding to the value x(m)=0 always goes down while the
edge corresponding to x(m)=1 always goes right. Terminal nodes
are not shown on this picture because it is also agreed that if
x(m)=0 and no edge goes down from the node m, then one gets to
the terminal node labeled by 0. Similarly, in the case of missing
“right” edge, one reaches the terminal node “1”. This alternative
description stile of SSBDD representation is possible due to
introduction of the inversion of variables. Otherwise it would be
impossible to represent a NOR gate using this alternative
description stile. From Fig. 2 it is also seen that no separate
treatment for different logic gates needed in SSBDD model.
Another advantage is the modest SSBDD model size illustrated in
Table 1 (compared to other BDD types).

Table 1. Comparison of sizes of different BDD models

Circuit In Out Gates ROBDD [2] FBDD [6] SSBDD
c432 36 7 232 30200 1063 308
c499 41 32 618 49786 25866 601
c880 60 26 357 7655 3575 497

c1355 41 32 514 39858 N/A 809
c1908 33 25 718 12463 5103 866
c2670 233 140 997 N/A 1815 1313
c3540 50 22 1446 208947 21000 1648
c5315 178 123 1994 32193 1594 2712
c6288 32 32 2416 N/A N/A 3872
c7552 207 108 2978 N/A 2092 3552

 OR

AND

NOR

y x1

x3

x21

x22

Fig.1. Illustration of the superposition principle

1

1

&

x1 x2

x21 x22

x3

y

y x1

x3

x21

x22

y x22

x1

x3

x21

Fig. 2. Two different SSBDD representations for the
combinational circuit from Fig. 1

mailto:artur@pld.ttu.ee

Logic Simulation. Two-valued logic simulation on SSBDDs
is equivalent to path tracing procedure on graphs according to the
values of variables at a given input pattern. An assignment to the
variables X activates a path l(m0, mT) from the root node m0 to a
terminal node mT. The simulation procedure consists in tracing the
path l(m0,mT) and evaluating the y=f(x) by finding the value e of
the terminal node mT. It is obvious that the worst case complexity
of logic simulation is equal to the total number of nodes in
SSBDDs. I.e. it is also linear O(n).

Multi-valued and Timing Simulation. For multi-valued simu-
lation, we use a procedure based on calculation of Boolean
derivatives on SSBDDs. Denote l(mi,mj) = 1, if there exists an
activated path between the nodes mi and mj for a given vector xt,
otherwise, l(mi,mj) = 0. Given y = f(x) and xi ∈ X, the condition
dy/dxi =1 for SSBDD Gy = (M,Γ,X) where x(m) ≡ xi is equivalent
to the following equation:

l(m0,m) ∧ l(m1, mT,1) ∧ l(m0, mT,0) = 1 (1)
Note that equation (1) can be used for calculating Boolean

derivatives only in the case where vector xt is two-valued, because
only in this case all the paths are activated uniquely. The general
case, when xt is a multi-valued vector, is considered in [3].

The timing simulation approach is based on the same
principle of calculation of Boolean derivatives on SSBDDs. The
difference between these methods is that in multi-valued
simulation we are tracing paths to search for the nodes with
variables having dynamic values while in timing simulation we
are searching for nodes that switch in current moment of time (i.e.
a notion of time is introduced).

Fault Simulation. In SSBDD representation the combinatio-
nal circuit is partitioned into tree-like fanout-free regions (FFRs)
called macros. The fault analysis procedure is based on combining
the parallel backward critical path tracing inside macros with
parallel forward critical path tracing between macros for FFR
stem fault analysis. By using SSBDD model and shifting to the
macro-level, we reduce the model complexity and achieve the
natural fault collapsing

Table 2 presents the number of uncollapsed faults, collapsed
faults and SSBDD faults in eight ISCAS85 circuits. As we can see
from the table, the traditional fault collapsing and SSBDD repre-
sentations provide almost identical results. The difference in the
number of faults is at most 8 % (in the case of c1908). SSBDD
achieves in average even 2 % better compaction of the fault list
than the traditional approach, reducing the fault lists in average
about 1.5 times.

Experimental Results and Conclusions. The experiments
were carried out on ISCAS’85 circuits. Figure 3 illustrates the
average speed-up obtained by using the SSBDD model for
implementing the four algorithms of logic-level simulation. In all
cases the speed of simulation for SSBDD model was higher than
for gate-level representation [3,4]. The fault simulation algorithm
(fat dashed line) shows the most noticeable acceleration. The
average speed-up of other three algorithms varies from about 1,5
up to almost 4 times. The rise of simulation performance (and, in
fact, reduction of the capacity of required memory) becomes

possible due to the model complexity reduction by shifting from
lower gate level to a higher macro level of fanout free subcircuits.

Very interesting property that can be seen in this diagram is
that for all the circuits all the four methods give correlated to each
other results. The origin of this effect is the variance of average
size of macros (measured in the number of gates) for various
circuits. This property is shown in Fig. 3 by the bold black line.
The behavior of this line is also correlated to the behavior of the
simulation curves. This unveils the fundamental property of the

investigated methods that the average simulation speed-up is
directly proportional to the average size of a fanout-free subcircuit
in the circuit (Fig 4). The same property can be used also to descr-
ibe ISCAS’85 benchmarks themselves. Now we can arrange these
benchmarks (Table 3) by the average size of fanout-free sub-
circuits (macros). This order is significant at least for evaluation
of methods, which use SSBDDs as the underlying model.

References

[1] R. Ubar, “Test Generation for Digital Circuits Using
Alternative Graphs (in Russian)”, Proc. of Tallinn Technical
University, 1976, No.409, Tallinn, Estonia, pp.75-81.

[2] R. Bryant “Graph-based algorithms for Boolean function ma-
nipulation”, IEEE Trans. on Comp., 1986, C-35, pp. 677-691.

[3] R. Ubar, “Multi-Valued Simulation of Digital Circuits with
SSBDDs,” Gordon and Breach Publ., Multiple Valued Logic,
1998, Vol.4, pp. 141-157.

[4] R. Ubar, A. Jutman, Z. Peng, “Timing Simulation of Digital
Circuits with BDDs”, in Proc. of DATE 2001 Conference,
München, Germany, 2001, pp. 460-466.

[5] R. Ubar, “Parallel Critical Path Tracing Fault Simulation” 39
Int. Wiss. Kolloq., Ilmenau, Germany, 1994, B1, pp. 399-404.

[6] W. Günther, R. Drechsler, "Minimization of Free BDDs," In
Asia & South Pacif DAC, Hong Kong, Jan 1999, pp. 323-326

Table 2. Comparison of collapsed and SSBDD faults

Circuit Uncollapsed Collapsed SSBDD
c880 1550 942 994

c1355 2194 1574 1618
c1908 2788 1879 1732
c2670 4150 2747 2626
c3540 5568 3428 3296
c5315 8638 5350 5424
c6288 9728 7744 7744
c7552 11590 7550 7104

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00

c432
c499

c880
c1355

c1908
c2670

c3540
c5315

c6288
c7552Circuit:

Av. macro size
Logic simulation
Fault simulation
Timing simulation
Multival.simulation

Fig. 3. Logic-level simulation speedup for different algorithms

Table 3. Benchmarks’ order according to the average macro size

c6288 c1355 c2670 c880 c432 c1908 c5315 c7552 c499 c3540
1,62 1,77 2,32 2,36 2,42 2,90 3,15 3,24 3,30 3,83

0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0

0,0 1,0 2,0 3,0 4,0 5,0
Average Macro Size

Si
m

ul
at

io
n

Sp
ee

d-
U

p Logic Simulation
Fault Simulation
Timing Simulation
Multival. Simulation

Fig. 4. Logic-level simulation speedup vs. average macro size

