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Abstract. Binary decision diagrams (BDD) have gained a wide acceptance as a 
mathematical model for representation and manipulation of Boolean functions in VLSI 
CAD. In this paper we consider a special kind of BDDs called Structurally Synthesized 
BDDs (SSBDDs), which have an important characteristic property of keeping 
information about circuit’s structure. Despite the fact that the SSBDD model itself is 
not new, we show for the first time in a formal way that this model is of linear 
complexity with respect to the number of logic gates in the circuit. We present new 
theoretical results in a form of equations that allow exact calculation of SSBDD model 
size for an arbitrary combinational circuit. Using these equations, we estimate the model 
complexity and compare it with the complexity of the gate-level netlist. We show in a 
formal way, that the SSBDD model is always smaller than the netlist still keeping the 
structure of the circuit. 

I. Introduction 

The constant increase of integration level of modern digital devices imposes high and further 
growing requirements on methods and algorithms used in VLSI CAD design, verification, and 
testing. It is clear that the efficiency of any algorithm depends heavily on the underlying mathema-
tical model. This fact has made the search for good models for Boolean function representation and 
manipulation a hot topic already for several decades. In the meantime the BDD model [1] has gained 
a wide acceptance and became a state-of-the-art data structure in modern VLSI CAD. First works on 
BDDs [2, 3, 4, 5] date back to 70s and even 50s. However, the model was not widely known until 
Bryant proposed a new data structure called Reduced Ordered Binary Decision Diagrams 
(ROBDDs) [6] in 1986. He showed simplicity of manipulation and proved the model canonicity 
what made it one of the most popular representations of Boolean functions. 

During the last decade, many modifications to BDD model were proposed [7]. They were 
mostly aimed at fighting a memory explosion problem, which limits its usability on large designs. As 
a result, some similar new models appeared that can represent any Boolean circuit in linear space, 
e.g. Boolean Expression Diagrams [8]. There is a special kind of BDDs called Structurally Synthesi-
zed BDDs (SSBDDs), which is also known to be of linear complexity with respect to the number of 
logic gates in the circuit [9,10]. However, the latter statement has always been based on intuitive 
speculations and experimental observations only. In this paper, for the first time, we show in a for-
mal way that the SSBDD model always has linear complexity with respect to the number of logic 
gates for any arbitrary combinational circuit. Moreover, we show that this model size is always less 
than the size of corresponding logic-level netlist. We also provide simple equations for exact 
calculation of SSBDD model size. Different equations use different parameters of combinational 
circuit. The simplest one is based on two basic parameters only: the total number of logic gates and 
the total number of signal lines (or half the number of un-collapsed stuck-at faults). 

Besides linear complexity, the main characteristic feature and advantage of SSBDDs compa-
red to other classes of BDDs is their ability of keeping structure of combinational circuits.  Due to 
this fact the SSBDD model has been proposed as a data structure for various CAD problems like fast 



deterministic test pattern generation [9], efficient design error localization [11], logic and multi-
valued simulation [12] for different purposes (like hazards investigation, delay fault analysis, and 
fault cover analysis in dynamic testing). Efficient algorithms for timing and fault simulation were 
proposed in [13, 14]. SSBDD model was introduced for the first time in [3, 5] as Structural 
Alternative Graphs and generalized as multiple-valued decision diagrams in [9]. Some more details 
on SSBDDs as well as their advantages in the logic-level simulation domain are considered in [10]. 

We continue our paper with definitions and terminology in Section 2. Section 3 is the main 
section where all the mentioned equations are proved and a method of the SSBDD model complexity 
estimation is considered. Finally, we bring conclusions in Section 4. 

II. Definitions and terminology 

In the following we will define some notions that are used throughout the paper. Since the 
SSBDD model is aimed at representation of logic level digital circuits rather than Boolean functions 
we define a combinational circuit as a network of basic Boolean logic gates, i.e. AND, NAND, OR, 
NOR, inverter, and buffer. This restriction on component base is important. We state that our 
technique holds for any combinational circuit composed of the specified set of 6 basic logic gates. 
Circuits, containing other types of gates have to be transformed into this component base before 
SSBDD model can be generated. 

Def.1 A connection between output of a gate and input of another gate that does not contain 
fanout points is called a signal line. If a signal connection contains a fanout point then the fanout 
stem and all the branches are separate signal lines. All primary inputs and primary outputs are also 
signal lines. 

It is not difficult to see that the number of signal lines is exactly a half of the number of un-
collapsed stuck-at faults (two SAFs per signal line). The circuit in Fig. 1 has 3 primary inputs, 1 
primary output and 8 signal lines. 

Def.2 Any part of a combinational circuit is called a tree-like subcircuit if it contains no 
fanout points inside. A tree-like subcircuit always has a single output and one or more inputs. A 
single logic gate or a signal line is also a tree-like subcircuit. Any combinational circuit can be parti-
tioned into a set of tree-like subcircuits (see Figure 2). It is not difficult to notice that if the elements 
of such a partition are tree-like subcircuits of a maximum size, then such a partition is unique. 

Def.3 Such tree-like subcircuits of a maximum size are called macros. 

Def.4 A BDD that represents a Boolean function y=f(X) over a set of Boolean variables X={x1, 
x2, … , xn} is a connected directed acyclic graph Gy=(V,E) with a set of nodes V and a set of edges E 
that defines mapping from V to V. Set V consists of two types of nodes: internal (non-terminal) VN 
and terminal VT, V=VN∪VT. A terminal node vT is labeled by a constant {0,1} and is called leaf, 
while all non-terminal nodes v∈MN are labeled by variables x∈X, and have exactly two successor 
nodes. Let us denote the variable associated with internal node v as x(v), then low(v) is the successor 
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of v at the value x(v)=0 and high(v) is the successor of v at the value x(v)=1. An example of a BDD 
is given in Figure 3. 

The majority of BDD modifications use Shannon decomposition: xx xffxy += . Here xf  and 
xf  are obtained from y=f(x) by replacing variable x by value 1 and 0 correspondingly. On the 

contrary, SSBDDs do not rely on Shannon decomposition. They are based upon the equivalent 
parenthesis form (EPF), that is, they describe a digital circuit structurally. 

Def.5 A BDD is called SSBDD, if there is a one-to-one correspondence between non-terminal 
nodes of a BDD and signal paths of a combinational circuit (or a subcircuit). Non-terminal nodes of 
an SSBDD are labeled by indexed variables, which can be inverted or not. The SSBDD model is 
further defined by construction. 

An SSBDD is constructed directly from a gate-level description of a combinational circuit by 
a graph superposition procedure. In this sense, it is equivalent to EPF generation by superposition of 
Boolean functions.  In prior to the superposition, the circuit must be partitioned into a set of macros 
(Fig. 2). Each macro will be represented by its own SSBDD. That is, the whole circuit is represented 
not by a single SSBDD but by a set of separate SSBDDs connected by internal variables. This is the 
main clue why SSBDD model does not grow exponentially. It is also useful to notice that the number 
of nodes in a particular SSBDD is equal to the number of inputs of the corresponding macro  and 
that each node represents a whole signal path inside the macro from one of its inputs to the output . 

Figure 4 illustrates how an SSBDD for the combinational circuit from Fig. 1 is constructed. 
First, we set elementary BDDs: for AND and NOR gates. Then we use the superposition principle to 
combine them into a whole single SSBDD just as OR gate combines the two gates into a single 
circuit. For SSBDDs, it is agreed that the edge corresponding to the value x(v)=0 always goes down 
while the edge corresponding to x(v)=1 always goes right. Terminal nodes are not shown on this 
picture because it is also agreed that if x(v)=0 and no edge goes down from the node v, then one gets 
to the terminal node labeled by 0. Similar reasoning holds in the case of missing “right” edge [9]. 

III. Calculation of SSBDD model size and complexity 

Let us start with combinational circuits consisting of a single macro only. Then, we can gene-
ralize the case for an arbitrary circuit. Finally, we are going to estimate the model complexity. 

A. Tree-Like Subcircuits 

Let’s start with macros consisting of one-input gates only. From Figure 5 it can be seen that 
the number of SSBDD nodes for such circuits is exactly 1 independently of the number of one-input 
gates. The variable in this single node will be inverted or not depending on the number of inverters 
in such a one-input circuit. 
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The next figure shows different macros consisting of two-input gates. It is not difficult to see 

that the number of inputs of a tree-like circuit that consists only of two-input gates depends on the 
number of gates only but not on their combination! Indeed, if we add one more gate to any of the 
two circuits in Figure 6 it will add two inputs and remove one. Therefore, each additional gate adds 
one input in total while the very first one adds 2 inputs. Since the number of SSBDD nodes Nnodes is 
equal to the number of inputs of the corresponding macro, it can be calculated using the following 
equation where g is the number of 2-input gates in the macro: 1+= gNnodes . 

The same reasoning holds for macros consisting of 3-input gates. The only difference is that 
each additional gate adds 2 inputs except the very first one, which adds all 3 inputs (see Fig. 7). 
Then the size of such a macro can be calculated using the following equation: 12 += gNnodes . If we 
continue increasing the number of inputs of the gates we will notice soon that the generalized 
equation for a macro consisting of k-input gates is the following: 1)1( +−= gkNnodes . 

 
So far we have considered quite an unusual situation where the whole circuit consists of a 

single macro, which in its turn consists only of gates with equal number of inputs. However, it is not 
difficult to generalize the equation for a macro consisting of arbitrary Boolean gates. Figure 8 clearly 
shows that, again, each k-input gate adds k inputs and takes one back (except, again, the first one). 
Therefore, we have to take the quantities of 1-input gates g1, 2-input gates g2, etc. into account 
separately. The generalized equation for a single macro consisting of arbitrary gates is the following: 

1  1    3  2  1  0 4321 ++…++++= nnodes )g(n-ggggN  

B. Arbitrary Combinational Circuits 

Let us again consider an arbitrary combinational circuit that may consist of an arbitrary 
number of macros. One must not forget here, that each primary input, which is a stem of a fanout as 
well as each primary output that is a fanout branch, all of them are separate macros having one input 
and one output (see Figure 2). Therefore, they will be represented by a 1-node-SSBDD. 

Theorem 1. The total number of SSBDD nodes for an arbitrary combinational circuit is 

(1)                                            1    3  2  1  0 4321 m)g(n-ggggN nnodes ++…++++=  

where m is the total number of macros and gi is the number of i-input gates in the circuit. 

Fig 7 Macro consisting of three-input gates Fig 8 Macro consisting of different gates 
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Proof. In order to calculate the total number of nodes in the SSBDD model for an arbitrary 
combinational circuit consisting of m macros we have to sum up SSBDD sizes for each macro: 
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Here, Nj is the SSBDD size for j-th macro and gij is the number of i-input gates in j-th macro.■ 

The last equation allows the exact calculation of the SSBDD model size for any arbitrary 
combinational circuit if some detailed information (like number of gates of each type and number of 
fanout points) about the corresponding logic level netlist is provided. This can be done even when 
the model itself is not yet generated. 

C. SSBDD Model Complexity 

Based on the last equation, let us now estimate the SSBDD model complexity. It is not 
difficult to notice that, in the worst case, all the gates in the circuit have the maximum possible 
number of inputs n and the number of macros is equal to the number of gates. In this case we have: 

nnnnnnnodes g n g gg n g )g (n-N ⋅=+−⋅=+= 1  

That is, the worst case complexity of the SSBDD model is O(n·G), where G is the total num-
ber of logic gates in the circuit and n is the number of inputs of the largest gate. In reality n is much 
less than G. Moreover, n can be regarded as a constant when G approaches to infinity. Therefore, the 
worst case complexity of the SSBDD model is linear with respect to the number of logic gates. 

D. Comparison of Sizes of the SSBDD Model and the Gate-Level Netlist 

The gate-level netlist size can be characterized by the number of signal lines. Let us calculate 
this parameter in similar way as we have calculated the SSBDD size. It not hard to see (see Fig. 8), 
that the number of signal lines in a single macro is as follows: 

1      4  3  2  1 4321 +⋅+…++++= nsignals gnggggN  

We just need to sum up all the inputs of all the gates plus one primary output of the macro. If 
circuit consists of an arbitrary number of macros  m, then the equation is the following: 

(2)                                           4  3  2  1 4321 mgnggggN nsignals +⋅+…++++=  

If we compare equations (1) and (2) we will see that the size of SSBDD model is always 
smaller than the size of the corresponding gate-level netlist for any arbitrary combinational circuit. 

E. SSBDD Size: Simple Equation 

Theorem 2. The size of SSBDD model generated for an arbitrary combinational circuit is the 
difference between the number of signal lines and the number of gates in the circuit: 

(3)                                                    gatessignalsnodes NNN −=  
Proof. Let us subtract equation (1) from equation (2). 

)  1    3  2  1  (0  )      4  3  2  1( 43214321 m)g(n-ggggmgnggggNN nnnodessignals ++…++++−+⋅+…++++=−
 



Subtracting term by term we will have the following: 

gatesnnodessignals NgggggNN =+…++++=−            4321  

Therefore:  gatessignalsnodes NNN −= ■ 

This result is important because it provides very facile method of estimation of the SSBDD 
model size based on just two main parameters of combinational circuits: the number of gates and the 
number of signal lines. Moreover, as it has been discussed above, the latter parameter is exactly a 
half of the total number of un-collapsed SAFs in the circuit, which is usually known. It also follows 
from the last equation that the SSBDD model is smaller than the gate-level netlist exactly by the 
number of gates. 

IV. Conclusions 

In this paper we showed in a formal way that a special type of BDDs called Structurally 
Synthesized BDDs (SSBDDs) always have linear complexity with respect to the number of logic 
gates for an arbitrary combinational circuit. Moreover, we showed that the SSBDD model 
complexity is even smaller than the complexity of corresponding logic-level netlist exactly by the 
number of logic gates. 

We provide several equations for exact calculation of SSBDD model size. The simplest one is 
based on two basic parameters of combinational circuits: the number of logic gates and the number 
of signal lines (or half the number of un-collapsed stuck-at faults). It also represents a strict 
relationship between mentioned parameters and the number of nodes in SSBDD model. 
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