Microcontroller „Basys MX3" and TASKs

Hardi Selg
22.11.2018

What we will learn to program

Simple test program


```
22
//Librarles
日 #include <xc.h>
    #include <sys/attribs.h>
    #include "config.h"
    #define DELAY_IN_MSEC_50 50
    #define DELAY_IN_MSEC_100 100
    #define DELAY_IN_MSEC_500 500
    //Main program
    int main(void) {
    //Has to be the first function call after main()
    init(); //Includes PIC16F690 basic configuration
    //Loop forever
    while(1)
    {
        //Write your code here
        if(BTND == 1){
            LEDO = 1;
        }
        else{
            LEDO = 0;
        }
        DelayForAproxmSeconds(DELAY_IN_MSEC_100);
    }
    return 0;
```

- When you push button „BTND" down, LED "LD0" should light up.
- When you release it, it will dim out.
!NB! - The while(1) loop should always have at least one delay.

Running your code

Running you code consists of 2 stages:

1. 'Clean and Build' Project
2. Run Project

Using 7-segment indicators

To assign values to indicator, call the function WriteDigits with 3 parameters:

1. Segment name (SEGM3)
2. Numeric value to be displayed (10)
3. Choose whether the "DOT" is ON or OFF

OR
Use SSD_WriteDigits to assign values to Segment indicators at the same time

- Numeric values can be in:
binary: 0b1010
decimal: 11
hex: 0x0C

Additional values for indicators

Symbol	Symbol value
NULL (all segments are off)	16
FULL (all segments are on)	17
H	18
L	19
P	20
I	21
U	22
N	23
Finus)	24

Example program

Explanation:

Source History

```
//Main program
```

int main(void) \{
//Has to be the first function call after main()
init(); //Includes PICl6F690 basic configuration
int value;
//Loop forever
whi le(1)
\{
//Write your code here
value $=$ SWO W SWl $+S W 2+S W 3+S W 4+S W 5+B T N L ;$
LED_SetGroupValue (value);
WriteDigits(SEGMO, Obll00,
WriteDigits(SEGM1, 0x0B,
WriteDigits(SEGM2,
WriteDigits(SEGM3,
10,
SW6) ;
SW7);
BTNL) ;
DOT_ON) ;

- function LED_SetGroupValue displays any given (parameter) numeric value as a binary number on LEDs

```
LED_SetGroupValue(5);
```


- Indicator 'DOT's can also be directly tied to either switches, buttons, or given a constant value

DelayFor AproxmSeconds (DELAY_IN_MSEC_100); \}
return 0;
[\}

Running your code

Running you code consists of 2 stages:

1. 'Clean and Build' Project
2. Run Project
|\#\# |IIT|

Lab task 1 - Controlling LED's

- Write a program, that assigns a simple logic element to 6 LED's witch has 2 inputs (switches). The same inputs can be used for all of the logic elements
- List of logic elements to be implemented:

AND, NAND, OR, NOR, XOR, XNOR

- Example: SW0 and SW1 are assigned to inputs of an 2 input AND
gate. So if both inputs are ON LED LDO will light up.

A	\mathbf{B}	AND	NAND	OR	NOR	XOR	XNOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

Lab task 2 - Running lights

- Write a program that lights up only one LED at given time. On the next iteration LED next to the previous LED will light up and so on. Effect should be that if the lit up LED reaches the edge, it will start coming back and so on.
- Example: It is the same as the front red light of KITT from Knight Rider.
\#\# \#
|t||

Lab task 3 - Modified example (page 7)

Change the example code so that:

- A BUTTON push will add up switched on SW-switches
- First indicator (SEGMO) would show the sum of the previously found value
- Second segment (SEGM1) is off at all times
- Segments SEGM3 and SEGM2 must show how many times switches have been added up
- If the number reaches 99, it must restart counting from 0
- LEDs must show the residue value when dividing the $\mathbf{S W}$ value by 4
- ALL of the outputs must only be refreshed when the BUTTON is pushed
|
H. IIIII

Lab task 4 - Egg timer

- Write a program that starts to count down from given binary value until it reaches zero. Current values must be displayed on the 7 -segment indicators. Timers starting value must be given using the SW switches. When timer reaches ZERO the LED's must start blinking on and off. Timers starts only when BUTTON is pushed.
- Example: If SWs have value of "00001111" and the BUTTON is pushed, the indicators will show value of "0015" and will start counting down until it reaches zero. Then LED's will start to blink. LED blinking repetition is not defined.
- The values must decrease once per second
- Values that can be entered by the user must be in the range of 0 to 255 ("00000000" to "11111111").

॥川! TALLINNA
||IITIII TEHNIKAÜLIKOOL

