
Analysis of Programming 
Languages

Introduction

Lembit Jürimägi



Why even have programming languages?
• Advantages

• productivity
• platform independence (to a certain extent)

• Disadvantages
• not an optimal use of resources
• programmers forget what is actually happening in hardware



Natural Language
• Means of communication
• Vocabulary

• Words (nouns, verbs, adjectives, etc), names, punctuation

• Grammar
• Flexible



Algorithmic Language
• Means of … programming, describing
• Vocabulary

• Reserved words, constants, names (variables)

• Grammar
• Very strict



Machine Language (Machine Code)
• Sequence of instructions
• Vocabulary (binary)

• Instructions, constants, addresses, offsets

• Grammar?
• Illegal instructions



Assembly Language
• Readable form of machine language
• Vocabulary

• Reserved words, constants, labels

• Grammar
• Very strict and simple



Natural Language vs Computer Language
• Number of words
• Flexibility of adding new words
• Complexity of grammar rules
• Flexibility of grammar
• Anything else?



Horse Trade
• You buy a horse for 5000€
• You sell the horse for 6000€
• You buy another horse for 7000€
• You sell that horse for 8000€

• How much money do you have?
• Why?



Context
• Derived from 

• previous statements
• shared knowledge
• personal knowledge



Horse Trade (C)
int cash;
cash -= 5000; // bought horse
cash += 6000; // sold horse
cash -= 7000; // bought another
cash += 8000; // sold it
printf("%d\n", cash);



Chomsky’s Mathematical Model of Grammar
• G = {S, N, T, R}, where 
• R – production rules
• T – terminal symbols
• N – nonterminal symbols
• S – starting symbol

• Grammar is used to generate all possible sentences in a language



Chomsky’s Mathematical Model of Grammar
Example: 
S: S
N: { A, N, V }
T: { boy, dog, happy, is, loud }
R: S -> N V A

N -> boy
N -> dog
V -> is
A -> happy
A -> loud



Chomsky's Hierarchy of Grammars
• Regular

• Example: regular expressions
• Implementation: finite state machine

• Context-Free
• Example: most programming languages
• Implementation: stack machine (pushdown automaton)

• Context-Sensitive
• Example: ?
• Implementation: memory machine

• Unrestricted
• Example: natural languages
• Implementation: ?



Critique of Chomsky
• Mathematical model isn't really useful for natural languages
• However, most computer languages have context-free grammar, even the 

ones that were created before Chomsky's theory
• For natural language tasks like speech recognition, other models are used
• Example: n-gram

• N words in sequence that have high probability to belong together
• Audio-to-text "dog is wood"
• 3-gram determines that "dog is good" is way more probable than "dog is wood" and 

replaces it



State of computer "languagescape"
• Humans are conservative and don't like change
• There is an impressive library of already existing software

• In binary form
• In some programming language

• This requires programming languages and even machine code to be 
backwards compatible

• C is 48 years old
• x86 assembly language is compatible with Intel 8080 from 46 years ago

• However technology has changed significantly and this backwards 
compatibility is hurting IT



Parallel programming with OpenMP
x = 0;
sum = 0.0;
step = 1.0/(double) num_steps;

for (i=0; i<num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

x = 0;
sum = 0.0;
step = 1.0/(double) num_steps;
#pragma omp parallel 
private(i,x,aux) shared(sum) 
{
#pragma omp for schedule(static) 
for (i=0; i < num_steps; i++){

x=(i+0.5)*step;
aux=4.0/(1.0+x*x);

#pragma omp critical
sum = sum + aux;

}
}
pi = step * sum;



V. Milutinovic , MECO 2018, Ultimate DataFlow SuperComputing for BigData Analytics



V. Milutinovic , MECO 2018, Ultimate DataFlow SuperComputing for BigData Analytics



V. Milutinovic , MECO 2018, Ultimate DataFlow SuperComputing for BigData Analytics



O. Mutlu, Processing Data Where It Makes Sense: Enabling In-Memory Computation, MECO 2018



O. Mutlu, Processing Data Where It Makes Sense: Enabling In-Memory Computation, MECO 2018



O. Mutlu, Processing Data Where It Makes Sense: Enabling In-Memory Computation, MECO 2018



O. Mutlu, Processing Data Where It Makes Sense: Enabling In-Memory Computation, MECO 2018



Why take this course?
• To get an overview of how compiling works
• To get some insight into why some language constructs have been made the 

way they are
• To get some knowledge on how the computer hardware will interprete your 

code (and perhaps be able to take it into account)

• To be able to construct a parser (or interpreter) on your own if necessary


	Analysis of Programming Languages
	Why even have programming languages?
	Natural Language
	Algorithmic Language
	Machine Language (Machine Code)
	Assembly Language
	Natural Language vs Computer Language
	Horse Trade
	Context
	Horse Trade (C)
	Chomsky’s Mathematical Model of Grammar
	Chomsky’s Mathematical Model of Grammar
	Chomsky's Hierarchy of Grammars
	Critique of Chomsky
	State of computer "languagescape"
	Parallel programming with OpenMP
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Why take this course?

