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Why even have programming languages?
• Advantages

• productivity
• platform independence (to a certain extent)

• Disadvantages
• not an optimal use of resources
• programmers forget what is actually happening in hardware



Natural Language
• Means of communication
• Vocabulary

• Words (nouns, verbs, adjectives, etc), names, punctuation

• Grammar
• Flexible



Algorithmic Language
• Means of … programming, describing
• Vocabulary

• Reserved words, constants, names (variables)

• Grammar
• Very strict



Machine Language (Machine Code)
• Sequence of instructions
• Vocabulary (binary)

• Instructions, constants, addresses, offsets

• Grammar?
• Illegal instructions



Assembly Language
• Readable form of machine language
• Vocabulary

• Reserved words, constants, labels

• Grammar
• Very strict and simple



Natural Language vs Computer Language
• Number of words
• Flexibility of adding new words
• Complexity of grammar rules
• Flexibility of grammar
• Anything else?



Horse Trade
• You buy a horse for 5000€
• You sell the horse for 6000€
• You buy another horse for 7000€
• You sell that horse for 8000€

• How much money do you have?
• Why?



Context
• Derived from 

• previous statements
• shared knowledge
• personal knowledge



Horse Trade (C)
int cash;
cash -= 5000; // bought horse
cash += 6000; // sold horse
cash -= 7000; // bought another
cash += 8000; // sold it
printf("%d\n", cash);



Chomsky’s Mathematical Model of Grammar
• G = {S, N, T, R}, where 
• R – production rules
• T – terminal symbols
• N – nonterminal symbols
• S – starting symbol

• Grammar is used to generate all possible sentences in a language



Chomsky’s Mathematical Model of Grammar
Example: 
S: S
N: { A, N, V }
T: { boy, dog, happy, is, loud }
R: S -> N V A

N -> boy
N -> dog
V -> is
A -> happy
A -> loud



Chomsky's Hierarchy of Grammars
• Regular

• Example: regular expressions
• Implementation: finite state machine

• Context-Free
• Example: most programming languages
• Implementation: stack machine (pushdown automaton)

• Context-Sensitive
• Example: ?
• Implementation: memory machine

• Unrestricted
• Example: natural languages
• Implementation: ?



Critique of Chomsky
• Mathematical model isn't really useful for natural languages
• However, most computer languages have context-free grammar, even the 

ones that were created before Chomsky's theory
• For natural language tasks like speech recognition, other models are used
• Example: n-gram

• N words in sequence that have high probability to belong together
• Audio-to-text "dog is wood"
• 3-gram determines that "dog is good" is way more probable than "dog is wood" and 

replaces it



State of computer "languagescape"
• Humans are conservative and don't like change
• There is an impressive library of already existing software

• In binary form
• In some programming language

• This requires programming languages and even machine code to be 
backwards compatible

• C is 48 years old
• x86 assembly language is compatible with Intel 8080 from 46 years ago

• However technology has changed significantly and this backwards 
compatibility is hurting IT



Parallel programming with OpenMP
x = 0;
sum = 0.0;
step = 1.0/(double) num_steps;

for (i=0; i<num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

x = 0;
sum = 0.0;
step = 1.0/(double) num_steps;
#pragma omp parallel 
private(i,x,aux) shared(sum) 
{
#pragma omp for schedule(static) 
for (i=0; i < num_steps; i++){

x=(i+0.5)*step;
aux=4.0/(1.0+x*x);

#pragma omp critical
sum = sum + aux;

}
}
pi = step * sum;
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Why take this course?
• To get an overview of how compiling works
• To get some insight into why some language constructs have been made the 

way they are
• To get some knowledge on how the computer hardware will interprete your 

code (and perhaps be able to take it into account)

• To be able to construct a parser (or interpreter) on your own if necessary
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