
Regular Languages

Lembit Jürimägi

Grammar
G = {S, N, T, R}
where
• G is the grammar,
• S is the nonterminal starting symbol,
• N is the set of all nonterminals:

for example: {S, A, B},
• T is the set of terminals:

for example: {a, b}
• R is the set of production rules,

for example:
S -> AB
AB -> aABb
A -> a
B -> b

Chomsky Hierarchy
• Type 3: regular grammar
• Type 2: context-free grammar
• Type 1: context-sensitive grammar
• Type 0: unrestricted grammar

Regular Grammar
Regular grammar places severe restrictions on the production rules:
• A single nonterminal element allowed on the left side
• On the right side a rule is allowed to have:

• nothing
• a single terminal element
• a single nonterminal element
• a single terminal element and a single nonterminal element

• The order of nonterminal and terminal elements must remain the same
within the grammar, it could be either:

• nonterminal followed by terminal (left linear)
• terminal followed by nonterminal (right linear)

Regular Language
• Language generated by regular grammar
• Language parser can be implemented using FSM
• Fast parsing
• Rules too simplistic (very poor support for nesting statements)
• Can be used as a scanner

Finite State Machine

0

1

2

- 0-9

0-9

0-9

Scanner / Lexer
• Scanner is a tool for matching the input for described patterns
• Lexer is a scanner for lexical elements of (some) language
• For example

• 111 – numeric constant (integer)
• 1.11 – numeric constant (real)
• a11 – variable
• "a11" – string constant

Regular Expressions (REGEXP)
• Wildcard characters instead of rules
• "+" – previous character (or character class) repeated 1 or more times

• a+ – a, aa, aaa, etc

• "*" – previous character (or character class) repeated 0 or more times
• ab* – a, ab, abb, etc

• "[]" – for describing character class
• [abc] – a, b, c

• "-" – for character range
• [a-z] – any lowercase latin character

• "^" – any character except the following character
• [^abc] – any character except a, b, c

Regular Expressions (REGEXP)
• "." – any character except newline
• "|" – choice

• a|b – a, b

• "{}" – string length
• a{3} – aaa
• a{2,4} – aa, aaa, aaaa
• a{3,} – aaa, aaaa, aaaaa, etc

• to match a wildcard character it needs to be escaped
• \+
• \-
• *

Flex
• Open source rewrite of AT&T tool lex
• Generates a scanner based on rules section
• Uses regular expressions for pattern matching
• Can be used as a lexer in conjunction with a parser
• Offers C functions and global variables for operating the scanner

Flex source file structure
• 4 sections:

top
definitions / options
%%
patterns / rules
%%
code

• Some sections may be empty

Flex file
%top{

#include "stdio.h"

}

%option case-insensitive

%option noyywrap

NUM [0-9]

%x STR

%%

{NUM}+ { printf("This looks like an integer: %d\n", atoi(yytext)); }

"\"" { BEGIN(STR); }

<STR>[^\"]+ { printf("quoted text: %s", yytext); }

<STR>"\"" { BEGIN(INITIAL); }

%%

int main(void){

return yylex();

}

Flex: useful stuff
Options
• %option noyywrap – stops after scanning current file
• %option prefix="smth" – renames functions and variables from yy* to smth*
• %option case-insensitive – scanner is case insensitive
• %option yylineno – counts linenumbers, must have a rule for \n to function properly
• %option warn – prints warnings
• %option stack – allows explicit manipulation of states via a stack
Variables / Functions
• FILE *yyin – input file, by default set to stdin
• char *yytext – the currently matched input
• int yylineno – the line number in current input file
• int yylex() – starts the scanning process, returns when return statements present in rules or end of input
• BEGIN(); – macro for explicit machine state
• INITIAL – starting state
• unput() – puts character back into stream to be scanned next

Flex: more useful stuff
Explicit states
%x NAME – creates exclusive state NAME
%s NAME2 – creates inclusive state NAME2
<NAME>a – specifies that a rule is to be applied only when in state NAME
Pushdown stack manipulation
• yy_push_state() – pushes current state to top of stack and switches to

supplied state
• yy_pop_state() – pops state from stack and switches to it
• yy_top_state() – returns the top state without altering stack

Flex: some command-line options
• -h – help
• -v – gives some information about the generated scanner
• -f – generates full character tables for each state
• -o – lets you specify filename for generated scanner
• -I – generates interactive scanner to be used from command-line
• -B – generates batch scanner to be used with files
• -7 – use 7 bit characters
• -8 – use 8 bit characters

Example:
flex -v -f test.l

	Regular Languages
	Grammar
	Chomsky Hierarchy
	Regular Grammar
	Regular Language
	Finite State Machine
	Scanner / Lexer
	Regular Expressions (REGEXP)
	Regular Expressions (REGEXP)
	Flex
	Flex source file structure
	Flex file
	Flex: useful stuff
	Flex: more useful stuff
	Flex: some command-line options

