
More Examples of Flex
Lembit Jürimägi

Flex source file structure
• 4 sections:

top
definitions / options
%%
patterns / rules
%%
code

• Some sections may be empty

Flex file
%top{

#include "stdio.h"

}

%option case-insensitive

%option noyywrap

NUM [0-9]

%x STR

%%

{NUM}+ { printf("This looks like an integer: %d\n", atoi(yytext)); }

"\"" { BEGIN(STR); }

<STR>[^\"]+ { printf("quoted text: %s", yytext); }

<STR>"\"" { BEGIN(INITIAL); }

%%

int main(void){

return yylex();

}

Flex: useful stuff
Options
• %option noyywrap – stops after scanning current file
• %option prefix="smth" – renames functions and variables from yy* to smth*
• %option case-insensitive – scanner is case insensitive
• %option yylineno – counts linenumbers, must have a rule for \n to function properly
• %option warn – prints warnings
• %option stack – allows explicit manipulation of states via a stack
Variables / Functions
• FILE *yyin – input file, by default set to stdin
• char *yytext – the currently matched input
• int yylineno – the line number in current input file
• int yylex() – starts the scanning process, returns when return statements present in rules or end of input
• BEGIN(); – macro for explicit machine state
• INITIAL – starting state
• unput() – puts character back into stream to be scanned next

Error reporting
• Scanner just finds matches to the defined patterns
• Errors are likely at higher abstraction, for example:

• input doesn't match the context-free grammar rules of the programming language
• integer constant is too large

• Still, when errors occur, the should be reported and user should find them
easily

• yylineno is keeping track what line of the input file is currently being
scanned

• A separate rule that matches newlines is necessary for it to work tho, even if
it is:

\n ; //do nothing

More than one scanner
• It may be necessary to scan different file types

• For example, C files and ASM files

• The prefix option enables you to have several scanners in your project
• All the yy.* functions get renamed with the specified prefix replacing yy
For example:
%option prefix="asm_"

... atoi(asm_text) ...
asm_in = fopen("code.s");
asm_lex();

print("Error at line %d", asm_lineno);
Filename will be: lex.asm_.c

Start conditions / states
• In some cases it is easier to specify a separate case for handling some

patterns
• For example, text string with escaped characters, we want to get rid of these

and replace them with real character codes
• This may mean that instead of having a pattern match the entire string, we

have to build up the string 1 character at a time.
%x STR
\" pos = 0; BEGIN(STR);
<STR>[^\"] buf[pos++] = yytext[0];
<STR>\\n buf[pos++] = '\n';
<STR>\" buf[pos++] = 0; BEGIN(INITIAL);

Inclusive / exclusive states
• %x specifies exclusive state
• This means that only rules that specify that state are used while in that state
• %s specifies inclusive state
• This means that rules that don't specify a state are applied while in this state
%x STR
%s ST2
\" BEGIN(STR)
\' BEGIN(ST2)
\n ; //this applies for ST2 but not for STR

Stack
• %option stack makes it possible to use a stack of states
• Using stack lets us scan a language that is more complex than a regular

language
• For example, we can check whether we have equal number of opening and

closing parantheses
%s PAR
\(yy_push_state(PAR);
<PAR>\) yy_pop_state();
<PAR>\n printf("too many opening\n");
<INITIAL>\) printf("too many closing\n");

Context-free Languages

Lembit Jürimägi

Context-free Grammar
Context-free Grammars have following restrictions placed on production
rules:
• A single nonterminal element allowed on the left side
• On the right side a rule is allowed to have

• nothing
• any number of terminal and/or nonterminal elements

Context-free Language
• Language generated by context-free grammar
• Language parser can be implemented using pushdown (stack) machine
• Slower parsing than regular languages
• Rules allow construction of complex enough structures for any programming

language
• Rules are still too simplistic for describing natural languages
• Can be used as a parser for programming languages

Example: Mathematical Equations
G = {S, N, T, R}
• N : {S, A}
• T : { () + - * / num var }
• R :

• S -> A
• A -> num
• A -> var
• A -> (A)
• A -> A + A
• A -> A - A
• A -> A * A
• A -> A / A

Postfix, infix, prefix calculator
• "fix" refers to the position of the operator

• Postfix: 2 2 +
• Infix: 2 + 2
• Prefix: + 2 2

• Infix requires operator precedence and parentheses to overrule precedence
• Postfix and prefix don’t and can be parsed without look-ahead
• As long as we don't need look-ahead, we can use Flex

	More Examples of Flex
	Flex source file structure
	Flex file
	Flex: useful stuff
	Error reporting
	More than one scanner
	Start conditions / states
	Inclusive / exclusive states
	Stack
	Context-free Languages
	Context-free Grammar
	Context-free Language
	Example: Mathematical Equations
	Postfix, infix, prefix calculator

