
Parsing

Lembit Jürimägi

Parser
Several types of parsers
• Bottom-up

• Shift-reduce
• LR - left to right scan, rightmost derivation
• LALR - look-ahead LR

• LALR(1) 1 token look-ahead
• LALR(k) k token look-ahead

• Top-down
• LL - left to right scan/generation, leftmost derivation

• LL(k) k token look-ahead

Parse Tree
• Tree structure to represent syntax of a given sentence

• Starting symbol as root element
• Intermediary non-terminals as branches
• Terminal elements as leaves

• Every required syntax element is present as a node in the tree
• Parser may omit generating a parse tree

Bison
• Open source version of classic AT&T tool yacc (yet another compiler

compiler)
• Generates a LALR(1) parser based on rules section
• Uses Backus-Naur form for pattern matching
• Allows to be interfaced with flex or can be used on its own (but then you

need to write your own scanner)
• Provides C functions and global variables for operating the parser
• Manual at: https://www.gnu.org/software/bison/manual/bison.html

https://www.gnu.org/software/bison/manual/bison.html

Bison Source File Structure
• 4 sections

top
definitions / priority rules
%%
rules / actions
%%
code

• Some sections may be empty

Bison source file example (calc.y)
%{

#include <stdio.h>

extern int yylex(void);

void yyerror(const char *s);

%}

%error-verbose

%token NUM ADD

%%

root : expr '\n' { printf("%d\n", $1); }

;

expr : NUM { $$ = $1; }

| ADD expr expr { $$ = $2 + $3; }

;

%%

void yyerror(const char *s) { printf("ERROR: %s\n", s); }

int main(void) { return yyparse(); }

Flex source file example (calc.l)
%top{

#include "calc.tab.h"

}

%option noyywrap

%option warn

%%

ADD { return ADD; }

[0-9]+ { yylval = atoi(yytext); return NUM; }

[\n] { return *yytext; }

. ; // filter everything else

%%

Bison: rules section
root:

| root line
;

• root – starting nonterminal symbol
• : – Bison's version of ->, separates left and right side of rule
• | – same as above but without repeating the left side again
• ; – ends the rules for current nonterminal (in this case root)
• line – another nonterminal, must have its own rules later on
• \n – no rule after ":", this declares that empty sentence is valid input

Bison: rules section, part 2
line: NUM ';' { $$ = $1; }

| NUM '+' NUM ';' { $$ = $1 + $2; }
| error ';' { yyerrok; }
;

• NUM – terminal symbol, because we defined it as token on a previous slide
• ';' and '+' – also terminal symbols that weren't explicitly declared
• {} – action, a code section
• $$ – refers to left side of rule at current line and its associated value
• $1 – refers to first element (NUM) at the right side of rule and its value
• error – a grammar error in the input
• yyerrok – a macro to recover from the error without exiting

Bison: definitions section
• %error-verbose – provides detailed error messages when parser fails
• token NUM – lists terminal NUM
• %left – specifies that in a recursive rule leftmost terminal is solved

(reduced) first, for example "%left '+'" means that in "a + b + c",
"a + b" is solved first

• %right – specifies that in a recursive rule rightmost terminal is solved
(reduced) first, for example "%right '+'" means that in "a + b + c",
"b + c" is solved first

Bison: some command-line options
• -h – help
• -d – generates a xxx.tab.h header file (if source is xxx.y) to interface with flex
• -v – creates a xxx.output file with information about generated parser
• -o – lets you specify filename (default is xxx.tab.c)
• -p prefix – renames yy* variables and functions to prefix*
• -g – generates a xxx.dot graph description file (can be viewed at

http://webgraphviz.com for example)

Example:
bison -d -v calc.y

http://webgraphviz.com/

	Parsing
	Parser
	Parse Tree
	Bison
	Bison Source File Structure
	Bison source file example (calc.y)
	Flex source file example (calc.l)
	Bison: rules section
	Bison: rules section, part 2
	Bison: definitions section
	Bison: some command-line options

