
Abstract Syntax Tree

Lembit Jürimägi



Production Rules (Regular Grammar)
• Rules can be recursive, meaning the same nonterminal can appear on both 

sides of the rule
• However a nonterminal can appear only once on the right side and either 

left or right from nonterminal for every rule in grammar (left-recursive vs 
right-recursive)

G = {S, N, T, R}; N : {S, A}; T : {a}; R : 
S -> A
A -> aA
A -> ∅
• During parsing this can be represented with a straight sequence:
aaa -> aaa∅ -> aaaA -> aaA -> aA -> A -> S



Production Rules (Contex-Free Grammar)
• Rules can be recursive and there is no restriction on the number and order 

of nonterminals on the right side of production rule 
G = {S, N, T, R}; N : {S, E}; T : {+, –, x, {num} }; R : 
S -> E
E -> {num}
E -> E + E
E -> E – E
E -> E x E
• A sequence is no longer enough to show the parsing process, a tree is 

needed
2 + 3 x 7 + 5 – 2 x 4



Parse Tree

2 + 3 x 7 + 5 – 2 x 4

E E E E E E

E

E

E

E

E

S



Parse Tree
• Contains all terminal and nonterminal elements
• Original sentence can be reconstructed
• Useful for visualizing the parse process
• Parser usually omits building it
• If grammar is unambiguous then operations are correctly ordered



Abstract Syntax Tree

2 + 3 x 7 + 5 – 2 x 4

x

x

+

+

–



Abstract Syntax Tree
• Gets rid of most nonterminal elements and unimportant terminal elements
• Primary focus is execution so some terminals may be altered
• Original sentence usually cannot be reconstructed
• Necessary to build for most interpreters and all compilers



Multiple Token Types in Bison and Flex
• By default the token type is int
• This can be changed by union clause:
%union{

int val;

char *s;

t_node *node;

}

• Tokens (and nonterminals) can now have a type:
%token <val> NUM

%type <node> expr

• yylval becomes union so Flex rules need to account for that:
yylval.val = atoi(yytext);



Dangling Else Problem
• Suppose we have grammar:
stmt : expr ';'

| IF '(' expr ')' THEN stmt

| IF '(' expr ')' THEN stmt ELSE stmt

• The IF-ELSE has 2 stmt parts and each could be another IF stmt
IF (a < b) THEN IF (b < c) THEN PRINT c; ELSE PRINT a;

• Which IF does the ELSE belong to?


	Abstract Syntax Tree
	Production Rules (Regular Grammar)
	Production Rules (Contex-Free Grammar)
	Parse Tree
	Parse Tree
	Abstract Syntax Tree
	Abstract Syntax Tree
	Multiple Token Types in Bison and Flex
	Dangling Else Problem

