
Hardware

Lembit Jürimägi



Software interpreter
• Parser lets us create an Abstract Syntax Tree, that represents the original 

code in a tree structure
• We can create nodes for arithmetic/logic operations, conditions, branch and 

loop statements, etc
• Crawling thru the tree structure can be easily done with a recursive function 

(implicit use of C call stack) or an explicit stack
• However, we are wasting additional time for navigating the tree structure
• This could be rewritten into a linear list of operations
• But we need 2 things, storage and a way to skip operations
• Let's look at some examples



Abstract syntax tree, arithmetic

2 + 3 * 7 + 5 – 2 * 4

*

*

+

+

– R = 3 * 7
R = 2 + R
R = R + 5
S = 2 * 4
R = R – S

We need storage 
for R and S



Abstract syntax tree, loop 1. R = a – 10
2. ifpos R GOTO 8
3. R = a + 1
4. a = R
5. R = x * 2
6. x = R
7. GOTO 1
8. ...

We need GOTO

a < 10 a = a + 1

=<

while

block

x = x * 2

=

+ *



Hardware
• Hardware could be physical or virtual (Virtual Machine)
• Virtual machine could replicate physical hardware but not always the case
• Instead of statements we have instructions
• High level statements have to be mapped onto one or more instructions



Code vs HW instructions
• Arithmetic and logic operations map very well to instructions
• Loops and conditional statements are replaced by jump/branch
• Conditions are turned into operations (a < b becomes a – b) or specific 

branch instructions
• There could be hardware flags that keep track of instruction results (is the 

result negative, is it zero, was there an overflow, etc)



Hardware design
• We need CPU, storage for program and data, and maybe external devices
• In the CPU we need 

• instruction pointer / program counter
• a way to access external memory 
• instruction decoder
• execution unit (ALU)
• maybe a way to access external devices
• maybe interrupts
• maybe FPU
• maybe internal memory (register file or stack)



CPU internal memory
• Could be small register file (typical to CISC architectures like x86)
• Could be large register file (typical to RISC)
• Could be stack (typical to virtual-only architecture)
• With register file it becomes necessary to map operands to registers
• It is an optimization problem, running out of registers means that operands 

have to be temporarily moved to memory
• Operands have different lifetime and same register can be reused by 

variables without overlapping lifetimes



External devices
• External devices (such as display, keyboard, etc) are accessible thru ports
• They may generate interrupts (a key is pressed), or they could be polled (a 

switch is on) or they could be write-only
• Ports may be mapped to memory (some memory addresses are reserved) or 

they could have separate address space and separate instructions for 
dealing with ports

• An interrupt requires a handler (the pressed key is stored in a memory 
buffer), the processor stops the current program flow, switches contexts, 
deals with interrupt, returns



Function calls
• Jumping to the subroutine is pretty similar to loops, conditions, etc
• Returning from the subroutine is different, CPU must know where it must 

return to
• Therefore there are usually separate instructions for calling a function
• Function body has instructions that will alter the contents of registers (if 

there are registers)
• This could completely mess up the code that called the function
• Calling convention is a standard on what steps are taken by caller and or 

callee to save the current context and restore it once the call is done



Function call stack
• A function is a separate block of code with its own variables (and 

parameters)
• A recursive function needs a new set of variables for each iteration
• Best way is to dedicate a separate stack frame for each function that is 

called
• But that requires hardware support, there must be dedicated registers that 

keep track of the current frame and let CPU address variables within that 
frame

• Usually two registers, stack pointer and base pointer
• Older hardware didn't have that, meaning that both parameters and internal 

variables were global variables



Architectures
• CISC

• complex instructions
• few registers
• instructions can address memory directly
• variable length instructions

• RISC
• simple instructions
• many registers
• instructions performed with registers and immediate values
• instructions are fixed length

• CISC-RISC
• complex instructions
• mapped to internal smaller instructions (μops)
• take variable amount of clock cycles



Data types
• Programming language can have several datatypes
• For example, in C, 8 integer types (1, 2, 4, 8 bytes) x (signed, unsigned)
• Then 3 floating point types (float, double, long double)
• An arithmetic operation can be performed between any of these types ( 

(11*10)/2 combinations )
• When mapping these data types to native hardware, additional conversion 

steps may be necessary



Java Virtual Machine
• Java code is compiled to byte-code
• The local data is in stack
• Instructions are single byte, operands and result are in the stack
• JVM emulates a theoretical 32-bit machine
• Emulation is slow, so there is also just-in-time compiler to compile byte-

code to native physical code
• .NET has similarities


	Hardware
	Software interpreter
	Abstract syntax tree, arithmetic
	Abstract syntax tree, loop
	Hardware
	Code vs HW instructions
	Hardware design
	CPU internal memory
	External devices
	Function calls
	Function call stack
	Architectures
	Data types
	Java Virtual Machine

