
Key words - fault simulation, digital systems, genetic
algorithms, deductive method, ATPG

Abstract

Models and methods of digital circuit analysis for test
generation and fault simulation are offered. The two-frame
cubic algebra for compact description of sequential primitive
element (here and further, primitive) in form of cubic coverings
is used.Problems of digital circuit testing are formulated as
linear equations. The described cubic fault simulation method
allows to propagate primitive fault lists from its inputs to
outputs; to generate analytical equations for deductive fault
simulation of digital circuit at gate, functional and algorithmic
description levels; to build compilative and interpretative fault
simulators for digital circuit. The fault list cubic coverings
(FLCC) allowing to create single sensitization paths are
proposed. The test generation method for single stuck-at fault
(SSF) detection with usage of FLCC is developed. The means
of test generation for digital devices designed in Active-HDL
are offered. The input description of design is based on usage
of VHDL, Verilog and graphical representation of Finite State
Màchine (FSM). The obtained tests are used for digital design
verification in Active-HDL. For fault coverage evaluation the
program implementation of cubic simulation method is used.

Also models and procedures of test generation for digital
systems verification based on genetic algorithms are offered.
Program implementation of test generator is oriented to processing
of digital circuits with large dimensionality and it combines
advantages of genetic algorithms (high speed operation of test
generation with specified fault coverage) with advantages of
deterministic ones (reproducibility of generated test sequences).

1 Introduction

Field Programmable Gate Arrays (FPGA) and Complex
Programmable Logic Devices (CPLD) make a deserved compe-
tition to microprocessor chips. Such success is defined by
usage of Hardware-Software Co-operation Design, minimum
time of digital system design (4-5 months), high-speed operation
(under 500 MHz), high level of gate-array chip integration.

However, there are testing problems together with advan-
tages of CPLD (FPGA). For solving these problems it is required
to create models, methods and CAD software. The mentioned
means have to support:
1) digital device testing at gate, functional and algorithmic
description levels, when the digital device has a high-level

integration and it is specified as FSM transition graphs, Bool-
ean equations, multi-level hierarchical structures;
2) test generation for SSF detection with fault coverage about
100%, where the test has a form of single sensitization path
cubic coverings;
3) acceptable operation speed of fault simulation algorithms;
4) design verification and diagnosis for synthesis into FPGA, CPLD;
5) possibility of concurrent execution of vector operation for
test generation and fault simulation;
6) VHDL standard support for digital circuit and obtained test
description;
7) opportunity of the integration into existing CAD systems of
world-wide leading firms (ALDEC etc.).

Deductive fault simulation method [1,2] is more preferable
because of its high-speed operation. It allows to detect all SSFs
by input test-vector during one iteration of digital circuit
processing. But this method is oriented to the gate level of
digital circuit description. It is connected with complexity of
output fault list generation for non-gate primitives. The offered
cubic fault simulation method allows to process digital circuits
described at gate, functional and algorithmic levels. In the other
side, the solution of the mentioned problem is presented as the
method of test generation for SSF detection with usage of FLCC
allowing to create single sensitization path.

2 Mathematical apparatus of primitive
analysis

FSM model of sequential primitive is: M=<X, Y, Z, f, g>,
where X=(X1,X2,...,Xi,...,Xm), Y=(Y1,Y2,...,Yi,...,Xh),
Z=(Z1,Z2,...,Zi,...,Zk) are sets of input, internal and output State
variables. The primitive is described by the cubic covering

C = (C1, C2, ..., Ci, ..., Cn), (1)
where Ci = (Ci1, Ci2, ..., Cij, ..., Ciq) is a cube including input,
internal and output coordinates Ci = (Ci

X, Ci
Y, Ci

Z), q=m+h+k.

C
C
Ct-1

Q t- 1

D

DQ
Z Z

Z t-1

Z t -1

T 2 T TT 1

D D

D

Fig.1. FSM model of flip-flop and latch
The main feature of suggested models is compactness of

truth- and transition tables for complex functional primitives
and FSM descriptions; universality and completness of table

 ATPG System and Test Genaration
Methods for Digital Devices

Vladimir Hahanov Olga Skvortsova Irina Sysenko Hayk Chamyan
Kharkov National University of Radio Electronics,
Lenin ave 14, 61166, Ukraine, hahanov@kture.kharkov.ua

models for solving problems of forward propagation and
backward implication; universality and simplicity of cubic
model analysis algorithms for: deterministic test generation,
fault-free and fault simulation.

3 Fault simulation based on cubic algebra

Let’s consider the model W= (M,L,T), where M is a primitive
model represented by cubic covering C, L is a fault list cubic
covering (FLCC), T is a test. Problems of digital circuit testing are
formulated on condition that one of components is not defined.

FLCC L for the vector T and the primitive covering C is
computed by a linear equation

LCT =⊕ , (2)
where ⊕ – is a binary operation XOR, which determines
interaction of components T, C, L in the three-valued alphabet:

.

XXXX
X011
X100
X10

CT ijj

⊕
=⊕

 (3)

The universal formula of FLCC analysis can be obtained as
a result of application of (3) to the test-vector T and to covering
of the multi-output primitive C. The mentioned formula can be
used for definition of faults L detected at output.

4 Algorithm of cubic SSF simulation for
combinational circuits

The cubic deductive SSF simulation algorithm for combi-
national circuit is defined according to the procedure (3):

1.First, the fault-free simulation of next primitive)M,1i(Pi = at

the test-vector)N,1t(Tt = is executed. If � �= , then a
detected fault list L(T) at the test T is formed. The end of

simulation. Otherwise, if � �< , then move to point 2.

2. If all circuit elements are processed � �� �= , the comparison
of two consecutive fault-free vectors is executed. If vectors are

equal (1r
t

r
t TT −=), then there is the end of simulation tT and

move to point 3. Otherwise, move to point 1.
3. Primary input fault lists are defined in the form of a

complement to their fault-free state }j{L jT
j = .

4. The fault simulation according to the procedure is executed

for primitive)M,1i(Pi = . The primitive output fault identified

as ��� is added to the obtained list.

5. If)Mi(= , then detected fault list L(Tt) generation and

motion to point 1 are executed. Otherwise, if Mi < , then
move to point 4.
������	
����
����
�����
���������	��������
��
�
���
�
��	����

����
����
����������������

�
������
�����
����

,)nq()L01,0(b

}2]3)L01,0[(nq{bC
M

1i

22

M

1i

2
ii

2F
k

ii
∑

∑

=

=

××××≈

≈++××××=

where qi, ni is a number of variables and cubes in cubic
covering; L is a number of lines in circuit; b is a number of faults;

M is a number of functional elements; ������� × is an average
number of active adjacent patterns of circuit lines; b is a number
of non-equivalent faults in circuit.
���������
�����
������	������
��
�
���
�
����
�����
�������
��

��
����������������
���
��
�������	���� �����!���

���"

#$��� %%
��&$'$(�

$
) ��

××=×==

In [3] the operation speed evaluation for concurrent algo-

rithm is *%
� $�+,��� ×= and for deductive one (CHIEFS

system) is *%
$-

%%
� $�$-�� =××= = , where W is a

lenght of word; G is a number of equivalent gates; Q is an
average number of gates sensitized by faults.

Since a number of circuit lines is less than a number of gates
at least in two times, the proposed cubic simulation method has
a better operaiotn speed in comparison with dedutive algo-
rithm. This gain will be bigger under processing of circuits at
functional level, when a number of lines is less than a number
of gates by dozens of times.

5 Fault simulation in sequential primitive
elenemts

Output fault list is a function, which is specified according
two consecutive input vectors, where each coordinate is
specified in the following combinations:





=

X

X
,

1

X
,

0

X
,

X

1
,

X

0
,

1

1
,

0

1
,

1

0
,

0

0
Tt .

The two-frame format of an input vector is directed forward
the sequiential FSM analysis, since, in general case, its
covering is specified in the two-frame alphabet. Hence, we

��������	
���

�����

�	��������������
��������	
� �
������������������
�

�

�
�
�

�
�
��

�
�
	

�
�

��
	

��
�
��

��
�
�

����������������������
����	

��������

�	
�����

 �
�	
������
!����

"
��������������
�������#�
�����������������

��������

�����������

�����
��������	
� ��

 �
������������	
�
�������
$��

%
�

&�

&�

�
�
��

	

�
�
�
		

��
�

��
��

�
�

&�

%
�

%
�

��
�	����������

Fig. 2. A digital functional module

can in form of table represents ⊕ -operation between
coordinates of the test-vector and the literals of two-frame
cubic covering.

Each coordinate of the table is a compact form of fault lists
CTL ⊕= . For instance, if input test-vector T=(01) and cubic

covering C=P the fault list cubic covering is following: L=S
Output coordinates of FLCC at two frames also can be

represented in form of table. For instance, for the coordinate
L=V, its value in previous frame is 0, and in current frame is 1,
and it is specified in in that table by letter E. Determinations of
symbols S, P are exceptions. There is an interpretation difference
depending on the fact, whether an output variable is the
function or the argument to the output, for which a detectable
fault list is generated. In the first case, determination of the
above-mentioned symbols gives (J, E), in the second one – (X,
X), that indicate to the absence of FLCC for the specified output
in the frame t-1.

6 Modified genetic algorithms for test
generation

Genetic algorithms are oriented to determination of function
extremum [3]. Depending on its properties of convexity, linearity
and differentiability the appropriate algorithm of search of
minimum or maximum is selected. If the function is rather
complex, multimodal and if it has a lot of break points then
finding of effective algorithm of extremum search is a difficult
problem. As regards discrete functions, it’s possible to find
appropriate extremum here without any assumptions about
function properties (linearity, monotonicity, conservability
and augmentability). Here, the special deterministic algorithms
[2] which use values of function in one or another point of
Boolean space are necessary.

 Genetic algorithms (GAs) are the algorithms of optimization
based on usage of natural selection mechanism. There are the
following features of GA application in contrast to other
algorithms of optimization. They are:

1) GAs work with vectors or codes of set of parameters.
2) GAs execute search of extremum in the population

presenting set of points of Boolean space in each iteration.
3) GAs use only the value of function in the point of

discrete space without taking into account its other properties.
4) GAs aren’t deterministic methods but they are

probabilistic ones.
Modified models of test generation for digital systems

verification in term of genetic algorithms is offered. The main
purpose of improving is maximal elimination of factor of
randomness from procedures of initial population definition,
crossover, mutation and natural selection.

Advantage of GAs is considerable high-speed operation of
test generation with ordered fault coverage in comparison with
deterministic methods. Drawback of GAs is probabilistic
procedures generating test, which can’t be reproducible
iteratively. It is unacceptable for digital systems verification.
That’s why, factor of randomness should be maximally excluded.

For that the modification of listed procedures of crossover,
mutation and natural selection is executed with substitution of
probabilistic components by deterministic ones.

7 ATPG Systems using developed fault
simulation and genetic algorithms methods

Test generation system for boolean equation TESTBUILDER.
The program is intended for ATPG with respect to SSFs of

digital designs described in language of Boolean equations.
Program operations:
1. Pseudo-random test generation in term of built-in binary

code generators and decimal code generators.
2. Deterministic binary test-vector generation, where the

mentioned test-vectors sensitize single logical paths in circuit.
3. Single stuck-at fault simulation with purposes of fault

coverage evaluation of obtained test.
4. Test formatting in standard of VHDL - Testbench.
The program has processed:
– 10 combinational circuits from list ISCAS’85; average time

of deterministic test generation is 28 minutes.
–140 combinational and sequential circuits from PRUS; 45

sequential circuits with large complexity from PRUS;
– 22 sequential circuits from list ITC’99; average time of

deterministic test generation is 2 hours.
– 216 sequential circuits;average time of deterministic test

generation is 14 seconds.
– 72 combinational circuits; average time of deterministic

test generation is 57 seconds.
Average complexity of design is 1000 lines. Average time

of pseudo-random test generation is 5 minutes. Test coverage
is more than 90 %.

Test generation system used GA.
Program implementation of the method has proved its

effectiveness in the view of speed operation and quality of
generated tests. The strategy of processing of digital device
presented in form of circuit contains next steps:

- algorithmic tests selection for initial population depending
on structural and functional complexity of object;

- definition of fitness-function of population by fault
simulation where fitness-function is test quality;

- execution of procedures of crossover and mutation in term
of deterministic procedures usage;

- forming of individuals-offsprings for the next population which
doesn’t substitute previous one but it’s always expansion to it.

Fault simulator.
Fault simulator is intended for single stuck-at fault simula-

tion of digital circuit, where the digital circuit is described at
functional level in form of cubic coverings.

The problems solved by the program:
1. SSF simulation on cubic coverings of functional primitive elements.
2. Simulation of complements to states of circuit lines on cubic
coverings of functional elements.
3. Algorithmic and pseudo-random test generation.
4. Length test optimization by improving its quality.
5. Optimization of number of algorithmic generators by coverage
problem solving.

Initial descriptions of testing object are VHDL and repre-
sentation of circuit in form of Boolean equations.

Result of program work is the test for digital design repre-
sented in VHDL (Testbench) format.

8 Experimental results

T��� test generation systems (TestBuilder uses deterministic
and genetic algorithms, Nemesis) have been evaluated by three
parameters: the test generation time, test quality and test size.
Test-examples are selected from ISCAS85 combinational circuits,
maximum size is 7552 equivalent gates. In general, the developed

tools of test synthesis based on genetic algorithm method have
advantages comparing with Nemesis and deterministic method:

1. In time. On average 49% saving of time have been
received (fig.3). (In general for big size circuits)).

2. In quality of test 0,06 % (fig.4). Genetic has advantage.

9 Conclusions and future work

The cubic fault simulation method is a new technology of
digital circuits processing at gate, functional and algorythmic
description level. It allows to simulate all single stuck-at faults
detected by test-vector during one iteration. The application
condition consists in usage of digital circuits description in terms
of cubic coverings of primitive elements. The proposed method
effectively processes sequiential digital circuits described by
two-frame cubic coverings as well. The last ones formalize
algorithm descriptions in the form of primitives corresponding to
transition graphs, FSM-charts, state tables of digital circuits.

The proposed technology of testing by the equation
LCT =⊕ provides the possibility of fault simulation on the

basis of the cubic covering analysis. It also allows to obtain
deductive formulas for any typical functional element, to design
compilative simulators for processing of digital circuits at optional
description level, to generate tests for digital circuits on the basis
of FLCC usage, to verify results of fault simulation and test
generation and to design high-speed hardware simulators.

The practical implementation of genetic algorithms method
for test generation has been proposed. It combines advantages
of genetic algorithms (high-speed operation of test generation
with reserved fault coverage) with advantages of deterministic
ones (reproducibility of generated input sequences).

Program realization of method has proved effectiveness of
proposed models and methods of test generation. It takes
intermediate position between algorithmic and deterministic
methods. For effective usage of software containing
implementation of genetic algorithms method it’s necessary to
define parameters of circuit processing skilfully. These parameters
depend on structure of tested digital device (Unit Under Test).

The proposed models and methods are realized in the form
of program applications. The last ones are used for test
generation of digital designs based on FPGA and CPLD. The
class of processed structures is FSM in the form of transition
graph and Boolean equations on flip-flop circuit. Digital circuit
description language is VHDL. Program applications are direct-
ed toward their use in design systems: Aldec, Xilinx.

References

[1] Armstrong D.B. A deductive method of simulating faults in logic
circuits. IEEE Trans. on Computers. Vol. C-21. No. 5. 1972. P. 464-471.

[2] Abramovici M., Breuer M.A. and Friedman A.D., Digital System
Testing and Testable Design, Computer Science Press, 1998. 652 p.

 [3] Goldberg D.E. “Genetic Algorithm in Search, Optimization
and Machine Learning”.– Addison Wesley.– 1989.– 342p.

Table 1
test ATPG algorithm tim e ������ test size

PRT
genetic algoritm 0,12 99,99 104

c1355 determ inistic 3,11 99,06 70

������� without random 4,11 99,05
genetic algoritm 0 100 7

��� determ inistic 	 �		

������� without random 0 100
genetic algoritm 5,11 98,1 76

c1908 determ inistic 8,91 96,93 44

������� without random 7,809 99,05
genetic algoritm 4,3 96,3 169

c3540 determ inistic 10,5 96,16 88

������� without random ����� 95,7
genetic algoritm ���� 99,23 45

c432 determ inistic 0,5 99,23 22

������� without random 0,649 99,2
genetic algoritm 0,80 100 65

c499 determ inistic 0 100 49

������� without random 0,104 98,9
genetic algoritm 4,16 99,9 121

c5315 determ inistic 3,43 99,8 70

������� without random 3,8 98,8
genetic algoritm 4,11 99,65 48

c6288 determ inistic 6,545 99,65 21

������� without random 6,238 99,5
genetic algoritm 9,45 96,5 128

c7552 determ inistic ���	� 94,06 55

������� without random 22,93 98,2
genetic algoritm 0,40 99,3 57

c880 determ inistic 0,4 99,44 31

������� without random 0,332 100

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

Fig. 4. Comparative analysis of test pattern quality

Fig. 3. Comparative analysis of test generation time

