Difference between revisions of "CPUProject"

From ATI public wiki
Jump to: navigation, search
m
m (Future plans)
Line 366: Line 366:
 
* implementation of Timers/Counters and peripherals
 
* implementation of Timers/Counters and peripherals
 
* Direct Memory Access (DMA)
 
* Direct Memory Access (DMA)
* MMU
+
* Memory management unit (MMU)
  
 
= Assembler =
 
= Assembler =

Revision as of 11:07, 11 December 2014

CPU project is one of the projects designed in department of computer engineering at TTU as a lab project. The main aims of this project are:

  • Developing a generic simple CPU
  • Writing a compiler for it
  • Compiling GCC for this architecture
  • Booting a lightweight linux on it

This project has many different aspects and each of these aspects can be used for laboratories in different courses.

CPU Design

 text
Fig 1: System Block Diagram
 text
Fig 2: System Architecture

Functionality Requirements

The CPU is supposed to be able to perform the following operations:

  • Addition/Subtraction
  • Increment/Decrement
  • Arithmetic and Logical Shift and Rotate through carry
  • Bitwise AND, OR, XOR and NOT
  • Negation
  • Load/Store
  • Unconditional Branch (jump)
  • Branch if zero / Branch if Overflow / Branch if Carry/ Branch if Equal
  • Clear Registers/Flags
  • PUSH / POP
  • NOP/HALT

It can use these operations to build more sophisticated operations later.

Architecture

The architecture of this CPU is based on harvard architecture which has separate instruction and data memory. The instructions are assumed to be in the instruction memory before boot.

Instruction Format

Our CPU's instuction has 8 bit of upcode and one operand that can be as long as 32 bit. First 2 bits of OPcode are at the moment reserved.

 text
Fig 3: Instruction fromat

Addressing Modes

The following Addressing modes are supported in out processor:

  • direct: program counter jumps to an address directly provided to it through instruction's operand
  • relative: the program counter will jump to a location reletive to its current location
  • indirect: program counter will jump to an address stored in a memory location
  • register: program counter will jump to an address stored in a register
  • indexed: program counter will jump to an address stored in the memory with address stored in a register

Instruction Set (IS)

The following instrcutions designed for the CPU:

Table 1: Instruction Set
Instruction Register Transfer Language OpCode DPU Command Data To DPU MemAddress Next PC
1 Add_A_B A <-- A + B 00 0000 00 000 0000 10 ---- ---- PC_out+1
2 Add_A_Mem A <-- A + Mem[Operand] 00 0001 00 000 0000 00 ---- Operand PC_out+1
3 Add_A_Dir A <-- A + Operand 00 0010 00 000 0000 01 Operand ---- PC_out+1
4 Sub_A_B A <-- A - B 00 0011 00 000 0001 10 ---- ---- PC_out+1
5 Sub_A_Mem A <-- A - Mem[Operand] 00 0100 00 000 0001 00 ---- Operand PC_out+1
6 Sub_A_Dir A <-- A - Operand 00 0101 00 000 0001 01 Operand ---- PC_out+1
7 IncA A <-- A + 1 00 0110 00 000 0000 11 ---- ---- PC_out+1
8 DecA A <-- A - 1 00 0111 00 000 0001 11 ---- ---- PC_out+1
9 ShiftArithR A <-- A(7) & A(7 downto 1) 00 1000 00 000 0111 00 ---- ---- PC_out+1
10 ShiftArithL A <-- A(7) & A(5 downto 0)& '0' 00 1001 00 000 1000 00 ---- ---- PC_out+1
11 ShiftA_R A <-- A(6 downto 0)& '0' 00 1010 00 000 1010 00 ---- ---- PC_out+1
12 ShiftA_L A <-- '0' & A(7 downto 1) 00 1011 00 000 1011 00 ---- ---- PC_out+1
13 RRC A <-- C & A(7 downto 1) ,C<-- A(0) 00 1100 00 000 1110 XX ---- ---- PC_out+1
14 RLC A <-- A(6 downto 0) & C ,C<-- A(7) 00 1101 00 000 1111 XX ---- ---- PC_out+1
15 And_A_B A <-- A and B 00 1110 00 000 0100 10 ---- ---- PC_out+1
16 OR_A_B A <-- A or B 00 1111 00 000 0101 10 ---- ---- PC_out+1
17 XOR_A_B A <-- A xor B 01 0000 00 000 0110 10 ---- ---- PC_out+1
18 FlipA A <-- not (A) 01 0001 00 000 1100 00 ---- ---- PC_out+1
19 NegA A <-- not(A) + 1 01 0010 00 000 1001 00 ---- ---- PC_out+1
20 Jmp PC <-- Operand 01 0011 00 000 0010 XX ---- ---- Operand
21 JmpZ if Z = 1: PC <-- Operand 01 0100 00 000 0010 XX ---- ---- if Z=1 then Operand else PC_out+1
22 JmpOV if OV = 1: PC <-- Operand 01 0101 00 000 0010 XX ---- ---- if OV=1 then Operand else PC_out+1
23 JmpC if C = 1: PC <-- Operand 01 0110 00 000 0010 XX ---- ---- if C=1 then Operand else PC_out+1
24 Jmp_rel PC <-- PC + Operand 01 0111 00 000 0010 XX ---- ---- PC <-- PC + Operand
25 JMPEQ if EQ = 1: PC <-- Operand 01 1000 00 000 0010 XX ---- ---- if EQ=1 then Operand else PC_out+1
26 ClearZ Z <--- 0 01 1001 00 001 0010 XX ---- ---- PC_out+1
27 ClearOV OV <--- 0 01 1010 00 010 0010 XX ---- ---- PC_out+1
28 ClearC C <--- 0 01 1011 00 100 0010 XX ---- ---- PC_out+1
29 ClearACC ACC <-- 0 01 1100 00 000 1101 XX ---- ---- PC_out+1
30 LoadPC PC <---- A 01 1101 00 000 0010 XX ---- ---- A
31 SavePC A <---- PC 01 1110 00 000 0011 01 PC ---- PC_out+1
32 Load_A_Mem A <-- Mem[Operand] 01 1111 00 000 0011 00 ---- Operand PC_out+1
33 Store_A_Mem Mem[Operand] <-- A 10 0000 00 000 0010 XX ---- Operand PC_out+1
34 Load_B_Dir B <-- Operand 10 0001 01 000 0010 XX Operand ---- PC_out+1
35 Load_B_Mem B <-- Mem[Operand] 10 0010 11 000 0010 XX ---- Operand PC_out+1
36 Load_A_B A <-- B 10 0011 00 000 0011 XX ---- ---- PC_out+1
37 Load_B_A B <-- A 10 0100 10 000 0010 XX ---- ---- PC_out+1
38 Load_Ind_A A <-- M[A] 10 0101 00 000 0011 00 ---- A PC_out+1
39 PUSH Mem [0 + SP] <--- A,SP <--- SP + 1 11 1100 00 000 0010 XX ---- SP PC_out+1
40 POP A <--- Mem [0 + SP - 1],SP <--- SP - 1 11 1101 00 000 0011 00 ---- SP - 1 PC_out+1
41 NOP NOP 11 1110 00 000 0010 XX ---- ---- PC_out+1
42 HALT HALT 11 1111 00 000 0010 XX ---- ---- PC

Implementation of complex instructions

the follwoing instructions can be also implemented with the ones in IS:

  • Call "function_name":
PUSH
SavePC
Push
Jmp "function address"
POP  
  • Return:
POP
Add_A_Dir 4
LoadPC
  • IndJMP "MemAddress":
PUSH
Load_A_Mem "MemAddress"
LoadPC

Note: its important to POP back the ACC value on the jump destination.

  • JmpB:
PUSH
Load_A_B
LoadPC

Note: its important to POP back the ACC value on the jump destination.

  • JmpIndx:
PUSH
Load_Ind_A
LoadPC

Note: its important to POP back the ACC value on the jump destination.

DataPath unit

 text
Fig 4: DPU block diagram

Datapath unit includes an Arithmatic Logical Unit (ALU), one Accumulator(ACC) and one general purpose register(Register B) and 2 multiplexers along with the flags (see Fig. 3). The DPU command is formed as following: DPUCommand.png

ALU Multiplexer

The ALU multiplexer chooses the inputs according to the table 2.

Table 2: ALU Mux
command output
1 00 MemDATA
2 01 ControlDATa
3 10 B
4 11 1

B-Register Multiplexer

The B-register multiplexer chooses the inputs according to the table 3.

Table 3: Register B Mux
command output
1 00 B
2 01 ControlDATa
3 10 ALUResult
4 11 MemDATA

ALU

The ALU covers the following operations:

Table 4: ALU commands
Command Operation Description
1 0000 A + B Addition
2 0001 A - B subtraction
3 0010 A Bypass A
4 0011 B Bypass B
5 0100 A AND B bitwise And
6 0101 A OR B bitwise OR
7 0110 A XOR B bitwise XOR
8 0111 '0' & A(BITWIDTH-1 DOWNTO 1) Logical Shift Right
9 1000 A(BITWIDTH-2 DOWNTO 0) & '0' Logical Shift Left
10 1001 NOT(A) + 1 Negation
11 1010 A(BITWIDTH-1) & A(BITWIDTH-1 DOWNTO 1) Arithmetic Shift Right
12 1011 A(BITWIDTH-1) & A(BITWIDTH-3 downto 0)& A(0) Arithmetic Shift Left
13 1100 NOT(A) Flip
14 1101 0 Clear A
15 1110 Cflag & A(BITWIDTH-1 downto 1) Rotate Right Through Carry
16 1111 A(BITWIDTH-2 downto 0)& Cflag Rotate Left Through Carry

For addition/subtraction a ripple carry model is made out of chain of full adders.

Flags

Table 5: DPU Flag
command FlagToClear
1 001 Clear Z
2 010 Clear OV
3 100 Clear C

In DPU has the following flags:

  • Zero Flag (Z): will be set if the result of the operation is zero
  • Overflow Flag (OV): will be set if an overflow happens in signed operations (as an example if we have 8 bit addition of 82+91 the answer we expect is 173 but the result would be interpreted as -45). Overflow flag can be realized in the following way:
  • Carry Flag (C): will be set if the unsigned addition or subtraction results in a carry.
  • Equal Flag (EQ): will be set if ACC value is equal to the operand

To clear flags,the SetFlag commands are used in DPU command (see table 5).

Instruction Memory (ROM)

Instruction memory is a read only memory that user will fill in the beginning.

Data Memory

 text
Fig 5: Data Memory block diagram

Data memory is made out of blocks of 1024 registers. If user wants bigger size memory, it would be necessary to add more blocks. Writing into data memory takes one clock cycle but readingf from it can be done instantly(or in reletively shorter time). So we can assume that if we issue address in one clock cycle, we can get the data in the same clock cycle. There is a stack is at the top of data memory and its size is not restricted. Behavioural VHDL description of one instance of data memory is shown in the code below.

Control unit

 text
Fig 6: Control unit FSM

Control unit has four states:

  • Fetch: fetches the instructions from instruction memory and loads it in Instruction Register (IR). DPU is IDLE. No Read from data memory.
  • Decode: decodes the information in IR. DPU is IDLE. No Read from data memory.
  • Execute: if execution on DPU is needed the proper control signals would be provided, otherwise DPU will stay IDLE. Read from data memory performed if needed.
  • WriteBack: in case there is a need to write a data into memory it will happen in this stage. All changes in Program Counter(PC) is happening here so all conditional and unconditional branching would be decided in this state. in case the instruction is HALT the PC would be frozen.

VHDL complete versions

Functional Testing

Following machine code program has been made to test functionality of all instructions. The test program doesnt cover all the cases but run through all the instructions. (at the moement not all the instructions are covered-12% missing)

Load_B_Dir "00011000" 
OR_A_B
IncA
Sub_A_B
NOP
JmpC "00001000"     
NOP
NOP
RRC
RLC
NOP
ClearC
Store_A_Mem  "00010000"
PUSH
SavePC
PUSH
Jump "00010101"
POP
ShiftArithL
DecA
HALT
Load_A_Mem "00010000"
And_A_B
JmpZ "00011001"
NOP
ClearZ
Add_A_Mem "00010000"
Sub_A_Mem "00010000"
Add_A_B  
Sub_A_Dir "00001100"
FlipA
XOR_A_B
NegA
ShiftArithR
ShiftA_L
ShiftA_R
ClearACC
POP
Add_A_Dir  "00000011"
LoadPC
HALT

Synthesizing on FPGA

One of the parts of this project is to synthesize 8-bit version of CPU on an FPGA board. The "?????" board has been chosen for this purpuse. The clock and reset signals are send to the cpu via push buttons and display the Accumulatror and address bus values on the seven segment displays.

The User Constriant File (UCF)

The following is the user constraints file for the project:

missing UCF file

Future plans

The following are the future plans for CPU:

  • Adding a couple of general purpose registers. maybe in this configuration:

RegisterSet.png

in this case we need a decoder to generate contorl signals for input multiplexers so only one mux can get input from outside at any given time.

  • implement barrel shift on acc
  • Adding I/O
    • first try would be Input and Output registers
    • wishbone bus maybe?
  • Adding interupts + super user mode (motorla has it MC68K)?
  • Pipelining
  • Branch prediction
  • Synthesis and FPGA implementation
  • VGA controller?
  • UART implementation
  • implementation of Timers/Counters and peripherals
  • Direct Memory Access (DMA)
  • Memory management unit (MMU)

Assembler

Python Assembly translator

A simple assembly translator was designed to make debugging process faster. Here you can see 32 bit version of the code:

import re
InstructionOpCode = {

                'Add_A_B':	"000000",
                'Add_A_Mem': 	"000001",
                'Add_A_Dir': 	"000010",
                'Sub_A_B':	"000011",
                'Sub_A_Mem':	"000100",
                'Sub_A_Dir': 	"000101",

                'IncA': 	"000110",
                'DecA':		"000111",

                'ShiftArithR':	"001000",
                'ShiftArithL':	"001001",
                'ShiftA_R':	"001010",
                'ShiftA_L':	"001011",
                'RRC':	  	"001100",
                'RLC':		"001101",

                'And_A_B':	"001110",
                'OR_A_B':	"001111",
                'XOR_A_B':	"010000",
                'FlipA':	"010001",
                'NegA':		"010010 ",

                'Jump':		"010011",
                'JmpZ':		"010100",
                'JmpOV':	"010101",
                'JmpC':		"010110",
                'Jmp_rel':	"010111",
                'JMPEQ':	"011000",

                'ClearZ':	"011001",
                'ClearOV':	"011010 ",
                'ClearC':	"011011",
                'ClearACC':	"011100",

                'LoadPC': 	"011101",
                'SavePC':	"011110",

                'Load_A_Mem':	"011111",
                'Store_A_Mem':	"100000",
                'Load_B_Dir':	"100001",
                'Load_B_Mem':	"100010",

                'Load_A_B':	"100011",
                'Load_B_A':	"100100",
                'Load_Ind_A ':	"100101",

                'PUSH':		"111100",
                'POP':		"111101",
                'NOP':		"111110",
                'HALT':		"111111",

}
AssemblyFile = open('Assembly.txt', 'r+')
MachineCodeFile = open('MachineCode.txt', 'w')
counter=0
for line in AssemblyFile:

    for key in InstructionOpCode:
        if key in line:
            operand= "00000000"
            if "Mem" in line:
                operand = re.findall(r'\d+',line)[0]
            elif "Jmp" in line:
                operand = re.findall(r'\d+',line)[0]
            elif "Dir" in line:
                operand = re.findall(r'\d+',line)[0]
            operand = "00000000"+"00000000"+"00000000"+ operand
            MachineCodeFile.write(str(counter)+ " =>   "+ "\"00"+InstructionOpCode[key]+operand+'\",'+'\n')
            counter +=1

MachineCodeFile.close()
AssemblyFile.close()

Java Assembler

This Assembler is wrote by Karl Janson as a project during system modeling course. You can find the information about how to use it in the User Manual.

Downloads

  • Executable file:
  • The Assembler code:

Compiler