CPUProject
CPU project is one of the projects designed in department of computer engineering at TTU as a lab project. The main aims of this project are:
- Developing a generic CPU without any fancy feature
- Writing a compiler for it
- Compiling GCC for this architecture
- Booting a light linux on it
Contents
CPU Design
Functionality Requirements
The CPU is supposed to be able to perform the following operations:
- Addition/Subtraction
- Increment/Decrement
- Arithmetic and Logical Shift
- Bitwise AND, OR, XOR and NOT
- Negation
- Load/Store
- Unconditional Branch (jump)
- Branch if zero / Branch if Overflow / Branch if Carry
- Clear Registers/Flags
- PUSH / POP
- NOP/HALT
It can use these operations to build more sophisticated operations later.
Architecture
The architecture of this CPU is based on harvard architecture which has separate instruction and data memory. The instructions are assumed to be in the instruction memory before boot.
Instruction Format
Our CPU's instuction has 8 bit of upcode and one operand that can be as long as 32 bit. First 2 bits of OPcode are at the moment reserved.
Instruction Set (IS)
The following instrcutions designed for the CPU:
Instruction | Register Transfer Language | OpCode | DPU Command | Data To DPU | MemAddress | Next PC | |
---|---|---|---|---|---|---|---|
1 | Add_A_B | A <-- A + B | XX00 0000 | 00 000 0000 10 | ---- | ---- | PC_out+1 |
2 | Add_A_Mem | A <-- A + Mem[Operand] | XX00 0001 | 00 000 0000 00 | ---- | Operand | PC_out+1 |
3 | Add_A_Dir | A <-- A + Operand | XX00 0010 | 00 000 0000 01 | Operand | ---- | PC_out+1 |
4 | Sub_A_B | A <-- A - B | XX00 0011 | 00 000 0001 10 | ---- | ---- | Example |
5 | Sub_A_Mem | A <-- A - Mem[Operand] | Example | 00 000 0001 00 | ---- | Operand | PC_out+1 |
6 | Sub_A_Dir | A <-- A - Operand | Example | 00 000 0001 01 | Operand | ---- | PC_out+1 |
7 | IncA | A <-- A + 1 | Example | 00 000 0000 11 | ---- | ---- | PC_out+1 |
8 | DecA | A <-- A - 1 | Example | 00 000 0001 11 | ---- | ---- | PC_out+1 |
9 | ShiftArithR | A <-- A(7) & A(7 downto 1) | Example | 00 000 0111 00 | ---- | ---- | PC_out+1 |
10 | ShiftArithL | A <-- A(7) & A(5 downto 0)& '0' | Example | 00 000 1000 00 | ---- | ---- | PC_out+1 |
11 | ShiftA_R | A <-- A(6 downto 0)& '0' | Example | 00 000 1010 00 | ---- | ---- | PC_out+1 |
12 | ShiftA_L | A <-- '0' & A(7 downto 1) | Example | 00 000 1011 00 | ---- | ---- | PC_out+1 |
13 | RRC | A <-- C & A(7 downto 1) ,C<-- A(0) | Example | 00 000 1110 XX | ---- | ---- | PC_out+1 |
14 | RLC | A <-- A(6 downto 0) & C ,C<-- A(7) | Example | 00 000 1111 XX | ---- | ---- | PC_out+1 |
15 | And_A_B | A <-- A and B | Example | 00 000 0100 10 | ---- | ---- | PC_out+1 |
16 | OR_A_B | A <-- A or B | Example | 00 000 0101 10 | ---- | ---- | PC_out+1 |
17 | XOR_A_B | A <-- A xor B | Example | 00 000 0110 10 | ---- | ---- | PC_out+1 |
18 | FlipA | A <-- not (A) | Example | 00 000 1100 00 | ---- | ---- | PC_out+1 |
19 | NegA | A <-- not(A) + 1 | Example | 00 000 1001 00 | ---- | ---- | PC_out+1 |
20 | Jmp | PC <-- Operand | Example | 00 000 0010 XX | ---- | ---- | Depends |
21 | JmpZ | if Z = 1: PC <-- Operand | Example | 00 000 0010 XX | ---- | ---- | Depends |
22 | JmpOV | if OV = 1: PC <-- Operand | Example | 00 000 0010 XX | ---- | ---- | Depends |
23 | JmpC | if C = 1: PC <-- Operand | Example | 00 000 0010 XX | ---- | ---- | Depends |
24 | Jmp_rel | PC <-- PC + Operand | Example | 00 000 0010 XX | ---- | ---- | Depends |
25 | JMPEQ | if EQ = 1: PC <-- Operand | Example | 00 000 0010 XX | ---- | ---- | Depends |
26 | ClearZ | Z <--- 0 | Example | 00 000 0010 XX | ---- | ---- | PC_out+1 |
27 | ClearOV | OV <--- 0 | Example | 00 000 0010 XX | ---- | ---- | PC_out+1 |
28 | ClearC | C <--- 0 | Example | 00 100 0010 XX | ---- | ---- | PC_out+1 |
29 | ClearACC | ACC <-- 0 | Example | 00 000 1101 XX | ---- | ---- | PC_out+1 |
30 | LoadPC | PC <---- A | Example | 00 000 0010 XX | ---- | ---- | A |
31 | SavePC | A <---- PC | Example | 00 000 0011 01 | PC | ---- | PC_out+1 |
32 | Load_A_Mem | A <-- Mem[Operand] | Example | 00 000 0011 00 | ---- | Operand | PC_out+1 |
33 | Store_A_Mem | Mem[Operand] <-- A | Example | 00 000 0010 XX | ---- | Operand | PC_out+1 |
34 | Load_B_Dir | B <-- Operand | Example | 01 000 0010 XX | Operand | ---- | PC_out+1 |
35 | Load_B_Mem | B <-- Mem[Operand] | Example | 11 000 0010 XX | ---- | Operand | PC_out+1 |
36 | PUSH | Mem [0 + SP] <--- A,SP <--- SP + 1 | Example | 00 000 0010 XX | ---- | SP | PC_out+1 |
37 | POP | A <--- Mem [0 + SP - 1],SP <--- SP - 1 | Example | 00 000 0011 00 | ---- | SP - 1 | PC_out+1 |
38 | NOP | NOP | Example | 00 000 0010 XX | ---- | ---- | PC_out+1 |
39 | HALT | HALT | Example | 00 000 0010 XX | ---- | ---- | PC |
Other instructions implementation
the follwoing instructions can be also implemented with the ones in IS:
- Call "function_name":
PUSH SavePC Push Jmp "function address" POP
- Return:
POP Add_A_Dir 4 LoadPC
DataPath unit
Datapath unit includes an Arithmatic Logical Unit (ALU), one Accumulator(ACC) and one general purpose register(Register B) and 2 multiplexers along with the flags.
ALU
The ALU covers the following operations:
command | operation | |
---|---|---|
1 | 00000 | A + B |
2 | 00001 | A - B |
3 |
Flags
In DPU has the following flags:
- Zero Flag (Z): will be set if the result of the operation is zero
- Overflow Flag (OV): will be set if an overflow happens in signed operations (as an example if we have 8 bit addition of 82+91 the answer we expect is 173 but the result would be interpreted as -45). Overflow flag can be realized in the following way:
- Carry Flag (C): will be set if the unsigned addition or subtraction results in a carry.
Control unit
Control unit has four states:
- Fetch: fetches the instructions from instruction memory and loads it in Instruction Register (IR)
- Decode: decodes the information in IR
- Execute: if execution on DPU is needed the proper control signals would be provided, otherwise DPU will stay IDLE
- WriteBack: in case there is a need to write a data into memory it will happen in this stage. All changes in Program Counter(PC) is happening here so all conditional and unconditional branching would be decided in this state. in case the instruction is HALT the PC would be frozen.
Instruction Memory (ROM)
Instruction memory is a read only memory that user will fill in the beginning.
Data Memory
Data memory has the following interface:
- Address
- Data
- WrtEn
- rst
- clk
Writing into data memory takes one clock cycle but readingf from it can be done instantly(or in reletively shorter time). So we can assume that if we issue address in one clock cycle, we can get the data in the same clock cycle.
There is a stack is at the top of data memory and its size is not restricted.
Functional Testing
Assembler
Python Assembly translator
A simple assembly translator was designed to make debugging process faster. Here you can see 32 bit version of the code:
import re
InstructionOpCode = {
'Add_A_B': "000000",
'Add_A_Mem': "000001",
'Add_A_Dir': "000010",
'Sub_A_B': "000011",
'Sub_A_Mem': "000100",
'Sub_A_Dir': "000101",
'IncA': "000110",
'DecA': "000111",
'And_A_B': "001000",
'OR_A_B': "001001",
'XOR_A_B': "001010",
'FlipA': "001011",
'NegA': "001100",
'Jump': "001101",
'JmpZ': "001110",
'JmpOV': "001111",
'Jmp_rel': "010000",
'JMPEQ': "010001",
'ClearZ': "010010",
'ClearOV': "010011",
'LoadPC': "010100",
'SavePC': "010101",
'ShiftArithR': "010110",
'ShiftArithL': "010111",
'ShiftA_R': "011000",
'ShiftA_L': "011001",
'Load_A_Mem': "011010",
'Store_A_Mem': "011011",
'Load_B_Dir': "011100",
'Load_B_Mem': "011101",
'JmpC': "011110",
'ClearC': "011111",
'ClearACC': "100000",
'RRC': "100001",
'RLC': "100010",
'PUSH': "111100",
'POP': "111101",
'NOP': "111110",
'HALT': "111111",
}
AssemblyFile = open('Assembly.txt', 'r+')
MachineCodeFile = open('MachineCode.txt', 'w')
counter=0
for line in AssemblyFile:
for key in InstructionOpCode:
if key in line:
operand= "00000000"
if "Mem" in line:
operand = re.findall(r'\d+',line)[0]
elif "Jmp" in line:
operand = re.findall(r'\d+',line)[0]
elif "Dir" in line:
operand = re.findall(r'\d+',line)[0]
operand = "00000000"+"00000000"+"00000000"+ operand
MachineCodeFile.write(str(counter)+ " => "+ "\"00"+InstructionOpCode[key]+operand+'\",'+'\n')
counter +=1
MachineCodeFile.close()
AssemblyFile.close()
Java Assembler