
Basiashvili, G. (2022). Hardware digital obfuscation [Master thesis, Tallinn University of Technology]. 
TalTech Digital Collection. https://digikogu.taltech.ee/et/Item/2fe4fee4-cd79-4108-bc55-7d7fd3b58896  

HARDWARE DIGITAL OBFUSCATION 
Giorgi Basiashvili 

 

Master Thesis, Tallinn University of Technology 

https://digikogu.taltech.ee/et/Item/2fe4fee4-cd79-4108-bc55-7d7fd3b58896


TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technology

Giorgi Basiashvili 201616IASM

HARDWARE DIGITAL OBFUSCATION

Master Thesis

Academic Supervisor

Samuel Nascimento Pagliarini

PhD

Academic Supervisor

Zain UI Abideen

MsC

Tallinn 2022



TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Giorgi Basiashvili 201616IASM

Riistvaraline digitaalne hägustamine
Magistritöö

Juhendaja

Samuel Nascimento Pagliarini

PhD

Juhendaja

Zain UI Abideen

MsC

Tallinn 2022



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Giorgi Basiashvili

Date: May 9, 2022

i



Annotatsioon

Viimased tehnoloogilised edusammud riistvaradisaini vallas võimaldasid meil luua

keerukaid omavahel ühendatud süsteeme, mida kasutatakse tarbe- ja tööstustoodetes, seega

on tegemist väärtusliku varaga, mida tasub kaitsta. Selle tulemusena kerkivad integraal-

lülituse (IC) ökosüsteemis esile mitmed turvaohud. Nende hulgas on murettekitavad

pöördprojekteerimise tavad, mille eesmärk on IC võltsimine, ületootmine või muutmine.

Seetõttu on intellektuaalomandi (IP) kaitsemehhanismide arendamine kriitilise tähtsusega.

Viimastel aastatel on eelnimetatud ohtude maandamiseks välja pakutud erinevaid tehnikaid,

kuid ükski tehnika ei näi olevat piisav disaini hierarhia varjamiseks. Selline hierarhia

hägustamise võimalus on eriti oluline korduvaid mooduleid sisaldavate kujunduste puhul.

Selles lõputöös pakume välja uudse viisi selliste kujunduste häguseks muutmiseks, ka-

sutades tavapärast loogikasünteesi. Kasutame disaini mitmekesisuse loomiseks mitmeid

sünteesitööriistas saadaolevaid optimeerimisi. Meie turbeanalüüs, mille viis läbi DANA

pöördprojekteerimise tööriist, kinnitab nende optimeerimiste olulist mõju hägustamisele.

Paljude segaseks peetud projekteerimisjuhtumite hulgast võivad kasutajad leida valikuid,

mis tekitavad väga väikeseid üldkulusid, ajades samas segadusse pöördprojekteerija töö.

ii



Abstract

Latest technological advancements in the field of hardware design allowed us the creation

of complex interconnected systems, used in consumer and industrial products, thus, it is a

valuable asset that is worth protecting. As a result, numerous security threats are emerging

from untrusted players in the integrated circuit (IC) ecosystem. Among them, reverse

engineering practices with the intent to counterfeit, overproduce, or modify an IC are

worrying. Accordingly, development of intellectual property (IP) defence mechanisms are

of critical importance. In recent years, various techniques have been proposed to mitigate

the aforementioned threats, but no technique seems to be adequate to hide the hierarchy

of a design. Such ability to obfuscate the hierarchy is particularly important for designs

that contain repeated modules. In this thesis, we propose a novel way to obfuscate such

designs by leveraging conventional logic synthesis. We exploit multiple optimisations

that are available in the synthesis tool to create design diversity. Our security analysis,

performed by the DANA reverse engineering tool, confirms the significant impact of these

optimisations on obfuscation. Among the many considered obfuscated design instances,

users can find options that incur very small overheads while still confusing the work of a

reverse engineer.

iii



List of abbreviations and terms

AI Artificial Intelligence

BEOL Back end of the Line

CPU Central Processing Unit

DPA Differential Power Analysis

EDA Electronic Design Automation

FEOL Front end of the Line

HPWL Half Perimeter Wirelength

IP Intellectual Property

IC Integrated Circuit

PDF Probability Density Function

PE Processing Engine

RE Reverse Engineering

RTL Register Transfer Level

SPA Simple Power Analysis

VLSI Very Large Scale Integration

3PIP Third party Intellectual Property

iv



Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 State of the Art 3

2.1 Side channel analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Attack Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Defence Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Hardware Trojans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Attack Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Defence Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Counterfeiting and IP piracy . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Attack Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Defence Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Split manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Attack Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Defence Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Reverse engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Physical Design obfuscation . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Structural Design obfuscation . . . . . . . . . . . . . . . . . . . 14

3 Methodology 17

3.1 GPS Correlator Architecture . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Proposed synthesis based approach . . . . . . . . . . . . . . . . . . . . . 18

3.3 Optimisation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Clock gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Ungrouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Datapath Analytical . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.4 Bubble Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.5 Tighten Max Transition . . . . . . . . . . . . . . . . . . . . . . . 22

v



3.3.6 Retiming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results 24

4.1 Power-Performance-Area evaluations . . . . . . . . . . . . . . . . . . . . 24

4.2 Dana security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusions 33

Bibliography 34

Appendices 40

Appendix 1 - GPS Correlator Code 40

vi



List of Figures

1 The left column shows the goals of the attack, and the right column shows

the location of the attacker. Source:[1] . . . . . . . . . . . . . . . . . . . 3

2 Hardware trojan classification. Source:[13] . . . . . . . . . . . . . . . . . 6

3 Anatomy of an integrated circuit. Source: [16] . . . . . . . . . . . . . . . 10

4 Use of atypical doping to make apparent PMOS transistor realise a constant

VDD output. Source: [18] . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Transistor level diagram of NAND gate. . . . . . . . . . . . . . . . . . . 13

6 Simple example of logic locking. Source: [24] . . . . . . . . . . . . . . . 15

7 Approaches to obfuscating a hierarchical design, from locking to design

diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 State diagram of GPS correlator. . . . . . . . . . . . . . . . . . . . . . . 18

9 The methodology to evaluate the hierarchy of design in the context of

reverse engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Ungrouping. Source:[34] . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Architectural overview on DANA. Source:[8] . . . . . . . . . . . . . . . 22

12 PDFs of the area (µm2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

13 PDFs of the number of cells . . . . . . . . . . . . . . . . . . . . . . . . . 26

14 PDFs of the leakage power (mW ) . . . . . . . . . . . . . . . . . . . . . 27

15 PDFs of the dynamic power (mW ) . . . . . . . . . . . . . . . . . . . . . 28

16 Graph of the register group for baseline design . . . . . . . . . . . . . . . 30

17 Graph of the register group for the clock-gated design . . . . . . . . . . . 30

18 Graph of the register group for the retiming (delay) . . . . . . . . . . . . 31

19 Graph of the register group for the clock-gating and retiming (delay) . . . 31

20 Graph of the register group for the clock-gating and retiming (delay) with

steered mode (Register size 10). . . . . . . . . . . . . . . . . . . . . . . 32

vii



List of Tables

1 Number of unique designs generated by an optimisation strategy. . . . . . 24

2 Minimum and Maximum values of area, number of cells, leakage and

dynamic power of the generated designs . . . . . . . . . . . . . . . . . . 26

3 Percent increase/decrease in the baseline design and a variants generated

with the corresponding optimisation technique . . . . . . . . . . . . . . . 29

viii



1. Introduction

Microprocessors have become an integral part of our everyday lives. Day by day elec-

tronics are getting smarter and smarter, we are already seeing smart appliances such as

coffee machines or toasters, and even some light bulbs have integrated ICs so that they can

be controlled remotely. These devices are designed with performance, power consump-

tion, and cost in mind, accordingly security of these designs might often be overlooked

[1]. Moreover, the tools needed for hacking the chips have become more available and

accessible to everyone [2]. Meaning hardware designs are becoming more vulnerable to

hardware threats, some of which include: Hardware Trojans, IP piracy and IC overbuilding,

Reverse engineering (RE), and Side-channel analysis. Even though the security of a light

bulb might not be critical, hardware security in safety-critical systems, such as automotive

or medical devices, becomes increasingly important [2].

Most adversaries can be categorised into three main groups, depending on their capabil-

ities and objective [2]. First are nation-states, which have unlimited resources and their

objectives can range from verifying the correctness of their manufactured designs, i.e. no

hardware Trojans were injected during the manufacturing process, to analysing enemy

technology [2]. Second, are criminals who are looking for a payoff [2]. It can be either by

IP piracy or monetizing by exploiting design flaws, namely through developing malware

[2]. Third, thrill-seekers looking to disrupt something [2].

The number of in-house designed ICs is increasing daily, accordingly, reverse engineering

and IP piracy are becoming one of the most pressing issues in hardware security [2].

With RE adversary can obtain information about the technology used in the device and

intellectual property, thus he will be able to manufacture it and sell it for profit, or it can

be used to detect design flaws and reduce the reliability of the design [1]. The primary

defence mechanism against RE is design obfuscation, which has two different approaches:

physical design obfuscation and structural obfuscation [1]. Obfuscation aims to hide

the real functionality of the IC, by either camouflaging the cells to look alike, in such a

manner that they can be mistaken for each other and thus result in incorrectly extracted

functionality or insert additional logic to lock the design so that it will produce correct

output only if the correct key is applied [1]. It should be noted that any IC can be reverse

engineered to the desired level of abstraction, granted that enough resources and time are

1



provided. Accordingly, the main goal of the obfuscation is to delay the adversary [2].

With machine learning and AI becoming more popular, special AI accelerator chips are

being developed. One distinct feature AI accelerators have over conventional ICs is the

presence of multiple processing engines [3]. Instead of doing calculations on the CPU

the presence of PEs allows concurrent execution using highly specialised circuits, which

results in a significant performance increase [4]. Similar to AI accelerator’s processing

engines, GPS modules contain multiple copies of a correlator module. Since these circuits

have the same module instantiated multiple times, by reverse engineering only one module

adversary can detect all the copies of it. In addition to applying defence strategies, similar

to camouflaging, on every module, therefore making it harder to RE, we can disguise

modules so that it is not obvious that they are the same. This way, instead of analysing only

one module, the adversary would have to analyse each module separately, thus dramatically

increasing the time and effort needed for RE.

In this thesis, we will be discussing the structural obfuscation technique, which focuses on

circuits that contain multiple copies of an entity and tries to increase the effort needed to

learn the complete function of the circuit, and a case study of a GPS correlator module.

Accordingly, we will assume that through complex imaging and delayering techniques, the

adversary was able to correctly extract the complete netlist and has to examine it. Extracted

netlist and structural isomorphism can be used to reverse engineer the functional unit [5].

To reverse engineer the functionality of an unknown unit, it can be compared and matched

against a library of components with known functions [6, 7]. Accordingly, we will try to

generate distinct designs of an entity, in this case, a correlator module for GPS, through

different optimisation and implementation strategies. We will also analyse the overhead, in

terms of area and power of generated designs.

First, we will discuss the state of the art. What are current threats and their corresponding

defence strategies. Secondly, we will discuss the methodology used and thoroughly

examine the optimisation strategies used. Then we will move on to the results that each of

the strategies produced. Next, the results of the reverse engineering tool, DANA [8], will

be discussed. Finally, we will evaluate the effectiveness of the proposed methodology.

2



2. State of the Art

Globalisation enabled the rapid development of ICs. Designing and manufacturing every

component of the IC in-house is related to tremendous costs. Thus, during the production,

IC might go through several third parties. Firstly, due to the ever-increasing complexity

of circuits in most cases, some parts of the IC are designed in-house the rest is provided

by the third party designers [1]. Next, the design is sent to a foundry, which fabricates

the wafers [1]. Finally, before shipping, wafers are tested, either at the same foundry

where it was produced or by a different company [1]. Nevertheless, due to the involvement

of multiple parties, the risk of IP violations and hardware Trojans increases. However,

depending on the adversary’s goal and location, he might employ other strategies as well.

Figure 1 vividly visualises strategies adversaries might adopt depending on the goal and

the location.

Figure 1. The left column shows the goals of the attack, and the right column shows the
location of the attacker. Source:[1]

2.1 Side channel analysis

Side channel analysis is one of the most commonly used strategies in IC analysis. Very

often it is used to retrieve secret keys, but can also be used to gain information about

different aspects of the circuit. Traditionally, side channel analysis is related to measuring

3



delays, power consumption, and electromagnetic radiation and retrieving secret keys by

analysing measurements [9].

2.1.1 Attack Methods

Common attack strategies for side channel analysis are: Simple Power Analysis (SPA),

Differential Power Analysis (DPA), and template attacks [10]. Moreover, with the ad-

vancements in ML and AI, numerous side channel analysis methods are being introduced

incorporating different ML strategies.

One of the first attack strategies developed was simple power analysis and differential

power analysis. Both of them involve recording the power consumption across time and

some understanding of how the circuit was implemented, nevertheless, SPA is highly

dependent on the adversary and how he interprets the data [10]. On the other hand, DPA,

developed several years after SPA, introduced the model-based side channel attacks which

allow the automation of the process. While in SPA adversaries manually analyse the power

consumption traces in DPA traces are grouped into two and statistical methods are used to

determine if they are different [10].

A more advanced and most commonly used attack strategy is template attack. Besides the

device under attack, it also requires an identical copy of it, which can be fully controlled for

experimentation, during which the adversary builds up multiple templates [11]. During the

experimentation phase, a large number, several thousand for each operation, of power traces

are recorded. Then mean values are calculated for each operation, which is used to select

the points with large enough differences between each other, thus resulting in a multivariate

distribution of the power signals of the selected points [11]. Additionally, a Gaussian

distribution can be applied to the selected points to further reduce the number of points

and simplify the calculations [11]. Finally, the templates can be constructed by computing

the noise covariance matrices for each pair of the components of the noise vectors for each

operation [11]. After the experimentation phase, the adversary has templates consisting of

mean signal and noise probability distribution for each unknown value of key bits and can

analyse the traces from the device under attack. Since it was assumed that we are dealing

with a multivariate Gaussian probability distribution, the Bayes theorem can be used to

estimate the key [11].

Advancements in AI and machine learning enabled researchers to move away from multi-

variate analysis and employ machine learning algorithms, which can deliver more accurate

results [9]. Usually, when applying ML algorithms the complete dataset is split into two,

the larger dataset, typically ranging from 65% to 85%, is used for training the model,

4



whereas the smaller one is used for validating the predictions of the model. Numerous

ML algorithms, such as Support Vector Machines, Random Forest, Rotation Forest, and

MultiBoost, can be used to analyse the power traces from side channel [9]. However, the

accuracy of the model not only depends on the algorithm and the parameters used, but also

on the circuit and data traces it produces. Despite the long process of parameter tuning,

which can have a significant impact on the accuracy of the model, ML algorithms are

gaining traction and are employed more frequently in side channel analysis.

2.1.2 Defence Strategies

Primary defence strategies against side channel analysis are the introduction of noise in the

system, by adding random operations that consume power, and leakage reduction, which

decreases the dependence of secret key on power consumption [1]. Since most of the attack

strategies assume Gaussian noise distribution, injecting artificial noise in the side channel

can throw off the adversary. The simplest defence strategy involves performing extra

multiplication operations, which increases the noise and thus reduces the dependence of

the secret keys on leakage current [1]. However, adding dummy logic can have significant

performance overheads and can be overcome by using a larger sample size and averaging

the results [1].

Nonetheless, some attack strategies, like template attacks, require multiple devices, thus

by using a large number of keys and changing them frequently the adversary might not

be able to acquire identical devices, consequently, is unable to analyse the design [11].

Furthermore, introducing randomisation in the computation process, such as address and

data scrambling, can play a significant role in mitigating side channel attacks [11].

2.1.3 Metrics

Core metrics of the side channel attacks are the amount of secret information that is

available and the number of samples that are required to extract the secret keys [1].

Nevertheless, the correlation between the secret information and recorded data traces can

be quantified with the side channel vulnerability factor [12]. Moreover, since template

attacks are very powerful and common, some authors use them to evaluate the effectiveness

of their proposed approach.

5



2.2 Hardware Trojans

Hardware Trojans are malicious circuits that can be integrated with a system to disable it

when a set of parameters are matched or leak sensitive information [13]. As we can see

from figure 2 Trojans have three main components, physical, meaning the modification

to the circuit that is necessary for injection, activation, meaning when and under what

circumstances Trojan gets activated, and finally action, does it transmit information or

modifies the functionality of the system [13].

Figure 2. Hardware trojan classification. Source:[13]

Physical characteristics of the Trojan include distribution, structure, size, and type. Distri-

bution refers to the physical location of the Trojan in the design [13]. Trojan placement can

have a significant impact on the structure of the designs, which can force other components

to be placed differently, thus resulting in a different layout [13]. It can either change the

placement of several components or all of them. Size describes the number of added

or removed components after injection [13]. Finally, type refers to whether gates and

components were added or removed, which is called functional, or whether the Trojan was

implemented using already existing gates and wires, called parametric [13].

Activation characteristics describe how a Trojan gets activated. It can happen via an

external signal coming from either a sensor or an antenna. On the other hand, it can either

be always active, or get activated if certain requirements such as a specific input pattern

are met [13]. Always active usually means that some components have a higher failure

rate than designed and to avoid detection by random signals this type of activation should

be used on the paths that are rarely exercised [13].

Finally, action characteristics define what is the behaviour of the Trojan. Transmit infor-

6



mation class describes Trojans that transmit key information to adversaries [13]. Modify

specification refers to changing the characteristics of existing wires and gates to modify

timings or delays [13]. Finally, a modification function refers to changing a functionality

by adding or removing logic, which can result in a significantly different design [13].

2.2.1 Attack Methods

Due to the specifics of hardware trojans, they can not be inserted post-production, thus it

can only be injected either during the design phase, by utilising third-party designs, which

were either modified by the threat actor or were designed with the trojan in mind, and

were overlooked during the design phase, or during the production phase in an untrusted

foundry.

2.2.2 Defence Strategies

Trojan detection can be an issue since they are activated using a very specific signal, often

based on external sources, moreover, due to the increasing complexity of designs detecting

small malicious circuits in significantly larger designs can be troublesome [13]. Besides

using test vectors and observing the output of the chip to verify the correctness of the

design, side channel analysis could be used to detect Trojans.

Automatic test pattern generation is a standard tool in VLSI design, it uses the netlist

of the circuit to generate input patterns and their corresponding outputs. Theoretically,

it should be able to detect every modification to the circuit that is propagated to the

output, nevertheless, in practice due to the large size of test vectors it is impractical [14].

Nevertheless, since most Trojans require changing the number of gates they should have

more impact on the overall circuit than process variation and should be detectable with

side channel analysis by applying random patterns at the input and measuring the power

consumption [13].

2.2.3 Metrics

Several metrics exist to measure the effectiveness of injected Trojan. Specifically, the

probability of detection, which is the relation between the number of detected trojans

divided by the total number of trojans. Moreover, the ratio of falsely identified trojans over

the number of trojan-free designs can also have useful information for researchers [1].

7



2.3 Counterfeiting and IP piracy

The goals of the adversary in IP piracy can range from identifying trade secrets to stealing

the design [1]. In case of identifying trade secrets, adversaries might have to employ various

reverse engineering techniques, which are discussed later in the chapter. Accordingly, in

this section we will focus on stealing the design and using it as a black box, to produce

and sell illegal copies of it. As we see from figure 1 adversary can be located either at the

foundry or at SoC Integrator, in both cases adversary has access to the design, accordingly,

defence strategies focus on either obfuscating the design to throw off the adversary or mark

the design so that ownership can be claimed after production [1].

2.3.1 Attack Methods

As already mentioned, due to the adversary’s location he has easy access to the design,

nevertheless, if defence strategies such as split manufacturing or obfuscation are used, the

adversary will have to use reverse engineering attack strategies to recover trade secrets.

2.3.2 Defence Strategies

Split manufacturing and logic locking are key defence strategies against IP piracy and

IC overproduction [1]. Split manufacturing limits the access of the untrusted foundry by

providing only partial design, which will be later assembled at a trusted facility. Accord-

ingly, the adversary will have to put extra effort even if he is not interested in trade secrets.

Similarly, with logic locking foundry is not provided with the activation keys, without

which the IC does not exhibit desired properties. In both cases, the design can not be used

as a black box system, and can not be illegally produced without extra effort [1]. Both of

these strategies are discussed in detail later.

Unlike split manufacturing and logic locking, the goals of fingerprinting and watermarking

strategies are proving the ownership of the design [1]. Both techniques can be applied

during high-level, logic and physical synthesis [1]. Watermark is a uniquely encoded

signature, which can be embedded into the IC during the design and implementation

phases, by introducing additional constraints [15]. Imposed constraints may force the

grouping of certain nodes and the formation of unique structures, which can be easily

and unambiguously identified [15]. Nevertheless, additional constraints might alter the

behaviour of the chip, accordingly, special pre- and post-processing steps should be

performed on inputs and outputs to ensure that it does not interfere with the rest of the

design [15]. Moreover, watermarks should be robust, meaning it should be impossible to

8



remove the watermark without knowing the complete functionality of the circuit [1]. In

addition to the watermarking, an additional unique identifier, fingerprint, can be inserted

for each produced instance to identify the source of piracy [1].

2.3.3 Metrics

Split manufacturing and logic locking metrics include the hamming distance between the

original netlist and the one predicted by the adversary. Metrics of the watermarking and

fingerprinting are the probability of the generation of the same identifier for two different

signatures, and the degradation of the quality of the solution [1].

2.4 Split manufacturing

One of the most efficient defence strategies against IP piracy, counterfeiting, and Trojan

insertion is split manufacturing. To protect sensitive information from untrusted foundries,

design can be split into two parts. The bottom layer where the transistors are built is called

the Front end of the Line (FEOL), and the top layer, where the metal layers are built for

routing, is called the Back end of the Line (BEOL) [16]. Figure 3 illustrates the anatomy

of the circuit in terms of FEOL and BEOL. Note that BEOL can contain multiple layers

of wiring which are denoted as MX, where X stands for the layer level. The FEOL layer

contains transistors, as a result frequently require the use of a high-end foundry, whether it

is trusted or not [16]. On the other hand, BEOL layers can be much simpler than the FEOL,

thus they can be manufactured in the lower end but trusted foundries [16]. By splitting the

design in two, the untrusted foundry has limited access to the design, and thus can not infer

the complete functionality of the design, or inject trojans, moreover, it also limits their

ability to counterfeit and sell illegal copies of the design. Nevertheless, an experienced

adversary might still attempt to gain knowledge of BEOL layers if he possesses FEOL. It

can be achieved with proximity, network flow, and SAT attacks [16].

2.4.1 Attack Methods

Modern EDA tools often place connected elements close to each other to reduce power

and area, thus providing several hints for the adversary. Proximity attack assumes that

input-output pairs of different cells are placed in close proximity to one another [16].

For each input pin on the FEOL layer, a set of candidate pins are selected. Candidate

pins should satisfy several conditions. Specifically, inputs should be only connected to

a single output, thus effectively eliminating all input-input connections and one to many

connections [16]. Moreover, since combinational loops are only used by specific structures

9



Figure 3. Anatomy of an integrated circuit. Source: [16]

that can be easily identified, they can also be excluded [16]. Accordingly, it is assumed that

connecting input pins to the closest output pins that satisfy the aforementioned constraints

should be the correct connection. While this attack strategy works perfectly for small

designs, consisting of several thousand gates, it becomes extremely unreliable once the

design size increases [16].

Shortcomings of the proximity attack are overcome by a network flow attack. In addition

to constraints utilised in the proximity attack, the network flow attack also considers the

load capacitance, meaning, specific cells have a certain maximum load capacitance, thus

only connections satisfying the constraint can be considered as the candidate. Besides

load capacitance, timing constraints, which can be guessed from the clock speed, for each

connection are also considered to further reduce the number of candidate pins [16]. Finally,

the common practice of connecting the source pin to the sink node along the direction

of the sink node is taken into account and all other connections are excluded from the

list [16]. However, unlike proximity attacks, input pins are not directly connected to the

closest output pins, instead directed graphs are constructed and the min-cost network flow

problem is solved with the Edmons-karp algorithm [16]. While the network flow attack

can retrieve the correct BEOL layer from larger circuits than the proximity attack, it is still

unable to retrieve correct connections for large circuits [16].

Finally, the boolean satisfiability (SAT) based attack has been developed. This, unlike

previous methods, places key-based multiplexers which allow connection between every

node of the FEOL layer and does not result in the cyclic path. As a result, a key-based

locked circuit is generated, which can be solved with SAT attack [16]. Thus, an equivalent

circuit of the original design can be retrieved.

10



2.4.2 Defence Strategies

As we already saw in the previous section, most of the attack strategies use proximity

information to retrieve the BEOL. Accordingly, proximity perturbation and wire lifting

strategies have been developed to challenge these types of attacks.

Proximity perturbation is the group of defence strategies that aim to decrease the number

of hints left from the EDA tools. Common strategies include swapping pins so that the

hamming distance between the outputs of the original netlist and the modified one is 50%

[16]. This way enough distinction is introduced in the circuit to throw off the adversary

utilising proximity attacks [16]. Besides pin swapping, placement and routing perturbation

can be used, which modifies the netlist to introduce randomisation in the design [16]. It

involves randomly swapping input and output pins, placing and routing the modified design,

and finally correcting the swapped pins in the BEOL layer [16]. Netlist randomisation

offers a great defence against proximity attacks, nevertheless, it is still vulnerable to SAT

based attacks.

Another type of defence strategy is wire lifting. The goal of wire lifting is to reduce the

number of connections on the FEOL layer and move them to the BEOL layer, thus making

it harder for the adversary to find correct connections [16]. An important constraint of

this strategy is manufacturability. To achieve a high yield, via and wire density should

be considered. Accordingly, lifting every connection from FEOL to BEOL is impossible,

nevertheless, by prioritising and lifting wires that have significant logic differences from the

neighbouring cells, and the wires that would easily produce wrong outputs if misidentified,

enough connections can be lifted to make proximity attacks impractical, thus boosting the

security [16].

2.4.3 Metrics

No single metric is developed to assess the effectiveness, of a split manufacturing defence

strategy, nevertheless, the most common metrics include the number of correctly predicted

BEOL connections and the hamming distance, between the original netlist and the one

predicted by the adversary [1].

2.5 Reverse engineering

As we can see from figure 1 reverse engineers might have several intentions. Accordingly,

the desired abstraction level will vary. Assuming the adversary wants to learn the full

11



functionality of the circuit, the reverse engineering process will consist of two primary

stages. First, delayering of the IC and netlist extraction. Second, netlist analysis and

functional unit extraction. During the first phase, the physical IC is delayered and an

image of each layer is taken, which is used to extract the netlist [1]. Since we can not

stop the adversary from delayering the IC, defence strategies focus on obfuscating the

physical characteristics of the transistors, in order to make cells look like each other and

infer different functionality. These types of defence strategies are called physical design

obfuscation. Nevertheless, if the adversary is located at the untrusted foundry, he already

possesses the netlist and thus can entirely skip the first phase. Nonetheless, during the

second phase, the netlist is analysed to learn the functionality of the IC. Defence strategies

targeting the second phase are known as structural design obfuscation.

2.5.1 Physical Design obfuscation

As already mentioned, physical design obfuscation focuses on the netlist extraction phase,

accordingly, it concentrates on circuit element modifications that are difficult or impossible

for an adversary to detect. Common steps for these types of attacks are delayering, imaging,

and netlist extraction. Delayering refers to the process of removing each metal and

dielectric layer one by one. It can be achieved either chemically, where special chemicals

in precise dosage are applied to each of the layers to diffuse it, or mechanically, which

involves rubbing tools to smoothen and remove excess surface. During the delayering

process, various microscopy techniques, such as focused ion beams, can be used to image

the specifics of the layer [17]. Finally, functional analysis can be used to extract the

functional units from the gate-level netlist, which can be easily recovered from images

[6]. Common obfuscation strategies focus on transistor property alterations in order to

create stuck-at faults, delay faults, or stealthy signalling, to confuse the adversary during

transistor-level functional analysis [18].

Stuck-at faults, which are transistors that are either always closed or always open, and

delay faults, which refer to the nodes switching faster or slower to change the sequential

behaviour of the chip, can be achieved by modifying the doping strategy. Figure 4 shows

a normal PMOS transistor on the left and a transistor with a different type of dopant on

the right, which creates a short circuit between the source and the drain thus producing

a stuck-at fault, hence effectively allowing us to mask a certain component and imply

different functionality [18]. For instance, Figure 5 shows that by utilising stuck-at faults,

specifically, if the Q2 transistor is always off and the Q4 transistor is always on, the B input

of the NAND gate will always be high, thus it will be the equivalent of the inverter. The

same strategy can be employed to make larger, more complicated circuits, and perform

simple operations, thus making a great defence strategy due to the difficulty of dopant

12



transistor detection. Moreover, by manipulating source/drain doping or channel doping we

can also make transistors switch faster or slower, thus creating delay faults [18].

Figure 4. Use of atypical doping to make apparent PMOS transistor realise a constant VDD

output. Source: [18]

Q1 Q2

Q3

Q4

Vcc

OUT

A B

A

B

Figure 5. Transistor level diagram of NAND gate.

Even though these faults are hard to detect, it is not impossible. The adversary can use

passive voltage contrast [17], or picosecond imaging circuit analysis [19], to detect dopant

manipulation. However, due to the technicalities of these approaches, detecting every

atypically doped transistor becomes slow and expensive, making it harder for an adversary

to reverse engineer the circuit [18].

Finally, stealthy signalling refers to utilising cross talk to send signals. Usually, cross

13



talk is undesirable, and various techniques have been developed to avoid it. Most notably,

connecting metal fills to either VCC or the ground, nevertheless if instead it is connected

to a clock or any other controlled signal, cross talk can be predicted and utilised to

signal between neighbouring interconnects [18]. To further improve the signal strength, a

thin interlayer dielectric can be used to increase the capacitive coupling between layers,

resulting in increased crosstalk [18]. Similar to stuck-at and delay faults, stealthy signalling

detection is extremely hard without a thorough examination of electrical properties, which

is time-consuming when the ICs contain millions of transistors [18].

Since, physical design obfuscation requires the insertion of additional transistors or the

metal fills, obfuscating every cell would result in significant size overhead and would tip

the adversary. On the other hand, by obfuscating only the cells that easily propagate to the

output, the adversary would first have to detect which cells were obfuscated [20].

Considering physical design obfuscation’s goal is to hide some functionality from the

adversary, the skills and resources of the adversary will play a major role during the

reverse engineering process. Accordingly, quantifying the obfuscation would also require

taking into account the skills of the adversary, which is impossible, thus there is a lack

of quantitative approach to classifying the level of obfuscation. However, assuming

obfuscated cells were detected but unidentified or partially unidentified, the number of

brute force attempts required to recover the functionality can be used as a metric [20].

Additionally, the hamming distance between original and obfuscated designs can be used

to quantify the level of obfuscation [20].

2.5.2 Structural Design obfuscation

While physical design obfuscation concentrates on making netlist extraction harder, struc-

tural obfuscation focuses on complicating the analysis phase of extracted design. Popular

techniques include EPIC and its successor smart logic obfuscation. Both techniques add ad-

ditional logic gates and memory elements to the combinational circuit, which are activated

only when a certain key is used, accordingly, the circuit produces desired output only when

the correct key is applied [21, 22]. A similar approach can be taken with sequential circuits,

however, additional states are inserted in a finite state machine (FSM). FSM can have

modified state transitions, invalid transitions from one state into another, duplicated states,

or even black hole states, from which it will be unable to recover [1]. In all these scenarios,

only the correct key produces the output, hence they are called key-based obfuscation

strategies.

Key-based obfuscation techniques are mostly applied in the post-synthesis stage of circuit

14



design. During which, XOR and XNOR gates can be randomly inserted throughout the

design [21]. Figure 6 shows logic locking by adding XOR and XNOR gates. Even though

randomly placed cells can be effective, they might be easily detectable by the adversary

[23]. Accordingly, the gates should be placed constructively. Specifically, by assigning

specific weights to the interconnect and placing them to maximise the summation of

weights [23]. Although gate insertion is fast and effective, MUX-based logic locking also

offers data flow path obfuscation [23]. By inserting multiplexers and connecting its wrong

outputs to dummy logic [23]. On the other hand, during the pre-synthesis stage, control

and data flow graphs, as well as binary decision diagrams, can be obfuscated and locked

[23].

Figure 6. Simple example of logic locking. Source: [24]

Even though logic locking is very effective, if the adversary has access to the netlist of the

circuit and an unlocked version of the IC, which in most cases can be obtained through the

open market, key extraction becomes feasible with SAT attacks [24]. During SAT attack

boolean satisfiability test is performed on the IC, to find the distinguishing inputs, which

can rule out at least one wrong key, where the satisfiability is verified by the unlocked

version of the IC utilised [24].

Nonetheless, even if one cannot obtain an unlocked version of the IC or the IC is designed

to counter SAT attacks, by employing the ANTI-SAT circuit, which makes key extraction

exponentially harder depending on the key size, keys can still be extracted with high

accuracy using novel machine learning algorithms [25, 26].

15



Since key-based obfuscations aim at increasing the reverse engineering effort, required to

recover keys, one of the main metrics of such type of obfuscation is the number of brute

force attempts needed to recover secret keys and the hamming distance between correct

and incorrect outputs of the circuit [1].

Another type of structural obfuscation is key-less obfuscation. Unlike key-based techniques,

if the adversary possesses a netlist of the IC, he can still use it as a "black box" and sell

illegal copies. Still, extracting functional units from the netlist should be harder. Such

strategies include the insertion of cells that are connected to the rest of the circuit but do not

have an impact on the output, thus creating more data the adversary has to analyse before

extracting functional logic [18]. However, there is no quantitative method to measure the

effectiveness of such strategies since it depends on the skills and the equipment of the

adversary.

16



3. Methodology

There are multiple examples of designs that repeatedly instantiate the same module. Such

as in the hardware implementation of neural networks, neurons that contain the multiply-

and-accumulate type of functions are instantiated hundreds to thousands of times [27].

This common design style is also seen in cryptographic hardware accelerators that are

round-based, such as the AES [28]. A generic representation of such a type of system is

shown in Fig. 7 (top panel), where a notion of a shared bus that connects all the repeated

elements is also introduced.

Obfuscated

Original design
No obfuscation in place, 

hierarchy is transparent

Instance 2 Instance 3 Bus
 . . .

Instance 1 Instance N

Instance 3 BusInstance 1 Instance N

Bus

 . . .

 . . .

Instance 2 Instance 3 BusInstance 1 Instance N
 . . .

Obfuscated Obfuscated Obfuscated

1-out-of-N obfuscation 
Adversary can ignore obfuscated 

module and copy others

N-out-of-N obfuscation 
Adversary may break one in order to 

break all. Significant overheads

Proposed approach 
Adversary does not immediately 

recognize hierarchy due to diversity

Figure 7. Approaches to obfuscating a hierarchical design, from locking to design diversity.

Next, assuming the system is an IP that is worth protecting against reverse engineering

threats, one could take a state-of-the-art locking approach [29] and apply it to a single

module (second panel). While this approach seems interesting at first – it would withstand

known attacks such as SAT – a capable adversary would bypass the problem entirely by

replacing the obfuscated module with one of the transparent ones. It follows then that all

instances have to be obfuscated under a key-based approach (third panel). However, even

if the approach appears to have merit, once a single module is broken, they may all be

broken. It is also important to note that logic locking approaches are not overhead-free, the

cost to obfuscate all N modules can be rather large [30].

The illustrative example depicted in Fig. 7 is an attempt to demonstrate that current

obfuscation practices have not sufficiently tried to hide the design hierarchy. The different

colours on the bottom panel of the image try to convey this concept of design diversity. In

the next subsection, we briefly discuss the architecture of the GPS correlator, a fundamental

17



part of the GPS module. Afterwards, we introduce a synthesis-based approach to achieve

slightly modified designs in a way that would make it harder for an adversary to notice the

repeated instances.

3.1 GPS Correlator Architecture

This thesis is based on a case study of the GPS correlator hardware obfuscation. The

objective is to develop a key-less structural obfuscation methodology that will be applicable

to circuits that utilise the same module multiple times. One of such ICs are neural network

accelerators which have multiple processing units. And due to the rise in popularity of

AI accelerated applications, their security and IP protection becomes prevalent. GPS

correlator is one of the integral parts of the GPS module. It receives a signal from the

satellite and continuously auto correlates it. Since GPS uses data from at least 4 satellites,

multiple correlators are needed. Moreover, an increased number of correlators can result in

a faster signal acquisition, which can be crucial in some scenarios. The correlator used in

this case study consists of combinational and sequential parts. The combinational part uses

XOR gates to perform correlation, meanwhile, the control unit keeps track of incoming

signals, offsets them, and stores them in registers to perform calculations. A state diagram

of the control unit is presented in figure 8. Data from sensors are read during setting and

loading states, then it is processed during deciding, dividing, offsetting, and running states,

and finally outputted during idle, locked, and read rank states.

Figure 8. State diagram of GPS correlator.

3.2 Proposed synthesis based approach

ASIC design flow can be divided into two phases: logic synthesis and physical synthe-

sis. During logic synthesis, the RTL description of the circuit is mapped into the netlist

18



of standard library cells. Whereas during physical synthesis netlist is further optimised

according to the placement, routing, and timing requirements. There are various opti-

misation techniques applicable during both phases of the design flow, which can have

a significant impact on the overall design. Modern EDA tools like Cadence and Xilinx

have integrated state of the art optimisation techniques, and allow the user to apply them

without the need to manually implement them [31, 32]. Applying optimisation strategies

during logic synthesis results in a different layout of the circuit and as already mentioned

the goal of this thesis is to generate a circuit with multiple copies of an entity with minor

differences in order to increase the effort needed to learn the complete function of the

circuit. Accordingly, we used Cadence Genus and a Nangate 15nm open cell library to

synthesise and optimise the correlator. Genus is highly configurable and offers state of the

art optimization techniques. A total of 9 optimisation strategies were used:

1. Clock Gating

2. Ungrouping

3. Datapath Analytical

4. Bubble Pushing

5. Tighten Max Transition

6. Retiming for Delay

7. Retiming for Area

8. Clock Gating + Retiming for Delay

9. Bubble Pushing + Retiming for Area

Besides optimisation strategies, to generate different designs, we selectively excluded

elements from the design. Specifically, the Nangate library contains 67 elements. And for

each run, a single element was excluded from the design. For instance, in the first run, we

excluded the AND2_X1 element, which is an AND gate with 2 inputs and drive strength

1. The simplest way the synthesiser can replace AND2_X1 is the use of an element with

different drive strength or a different number of inputs, in both cases at least area and

power consumption will be different from the baseline version. However, depending on the

synthesiser it can also use any other element to implement the same functionality. In the

second run, we returned the AND2_X1 but instead emitted the AND2_X2 element which

is also an AND gate with 2 inputs, but it has a different drive strength. This way, each

design will be marginally different from the previous one. First, this process was done

without any optimisations, then it was repeated for the previously mentioned optimisations

and their combinations. Ideally, it would produce:

(Numberofelements+ 1) ∗ (Numberofoptimisations) = 612

19



however, in some cases this difference might not be enough to alter the design significantly

enough, accordingly, we have to check each design and verify that their characteristics,

such as area, power, and critical path delay are different and eliminate the duplicate designs.

Fig. 9 illustrates our methodology that exploits the aforementioned techniques during

the logic synthesis to evaluate the obfuscation of the design’s hierarchy. The complete

process is fully automated and scripted to enable a push-button analysis. We provide RTL

description (i.e., Verilog or VHDL), timing constraint, and standard cell library of the

targeted technology. We use the Nangate 15nm library of standard cells throughout the

evaluation.

RTL

Commercial synthesis tool

Timing constraint

*
 N

an
g
at

e 
1
5
n
m Standard cell library

R
ep

ea
tGate level netlist

opt_A + opt_B

dont_use X

O
p
ti

m
iz

at
io

n

Extract cells

Select cell

Data flow analysis

Hierarchical analysis

A
u

to
m

a
te

d
 p

ro
ce

ss

Reports

Figure 9. The methodology to evaluate the hierarchy of design in the context of reverse
engineering.

3.3 Optimisation strategies

3.3.1 Clock gating

Clock gating is a popular power-saving technique. It refers to the activation of the clock

signal in a specific part of the circuit only when there is work to be done [31]. Clock

power can consume a significant portion of the total power usage, thus its optimisation

can have a substantial impact on the overall power usage [31]. Clock power consumption

depends on capacitance, voltage, and frequency, and clock gating helps us reduce switching

capacitance, by avoiding unnecessary state updates to the components [31]. The simplest

clock gating strategies include utilising logic gates such as AND or NOR gates [33]. By

connecting one input of the NOR gate to the clock and the other to the enable signal we

can effectively pass the signal only when both of them are zero and create a clock gating

20



which is especially useful for positive edge triggering circuits [33]. Another popular clock

gating strategy is the RTL clock gating, which identifies flip-flops with a common enable

signal and uses it to control the clock enable signal of the flip-flops [31].

3.3.2 Ungrouping

Ungrouping is the process of merging sub designs into the parent design [34]. It is

especially helpful for floor-planning [35]. Figure 10 brightly demonstrates the result of

ungrouping. One of the ungrouping algorithms is MB*-tree. It has two main stages,

clustering and declustering [36]. During the clustering phase, it groups modules based on

area utilisation and connectivity with other modules [36]. After this comes the declustering

phase, during which newly clustered groups are expanded and additional logic is shared

between modules [36, 35]. It helps us reduce the area by sharing logic and reducing timing

[34].

Figure 10. Ungrouping. Source:[34]

3.3.3 Datapath Analytical

Datapath structure can have a significant impact on the performance, due to which lots

of high-performance VLSI designs datapaths are handcrafted [37]. However, due to the

constantly increasing complexity of designs, manually optimising everything becomes

infeasible. Thus, various analytical datapath optimisation techniques, such as HPWL

have been developed [38, 39, 40]. Since HPWL works during the logic synthesis phase,

its wirelength estimations are not accurate, especially in larger designs [38, 39]. If the

whole optimisation process is divided into multiple parts, datapath performance can be

significantly increased. Specifically, if the datapath circuit’s connectivity regularity is

extracted and used to evenly distribute them during the placement of logic blocks, then

an optimal placement strategy can be achieved [38]. Nonetheless, many other datapath

optimisation strategies exist which might work better in other circumstances, for instance

they might specialise in latch placements. However, optimisation strategies utilised by

21



EDA tools are often proprietary [41].

3.3.4 Bubble Pushing

The practice of applying DeMorgan’s law and duplicating logic to remove trapped inver-

sions is called bubble pushing [42].

3.3.5 Tighten Max Transition

In larger systems where delay timings vary between different logic blocks, a single switch-

ing event can be propagated at different speeds, thus causing multiple switches which can

cause the wrong value to be captured by a latch [43, 44]. Thus, constraining max transition

times can have a significant impact on reliability and power consumption [43, 45]. One

of the most common and efficient delay reduction techniques is buffer insertion [46]. An

optimal number of inverters can be calculated based on the total resistance and capacitance

of the interconnect line [46].

3.3.6 Retiming

Retiming is the process of reorganisation of memory elements in synchronous circuits [47,

48]. It can be focused either on minimising the delay, which is called retiming for delay

or minimising the number of registers and thus achieving area savings, which is called

retiming for area [47]. It was first introduced by Leiserson and Saxe in [49], and various

papers are still published regarding numerous optimisations to the original algorithm [50].

3.4 Evaluation

Finally, a reverse engineering tool, DANA [51, 52, 8], was used to analyse the designs

and evaluate the effectiveness of the method. As we can see from figure 11 depicting

the architecture of the tool. There are three main stages: preprocessing, processing and

evaluation. Processing and evaluation phases are run at least twice [8].

Figure 11. Architectural overview on DANA. Source:[8]

22



First, in the preprocessing phase, it parses through the netlist and identifies all flip-flops,

and traces them until the next memory element is detected [8]. Thus, the flow of data

between flip-flops is also identified. Next, each identified flip-flop is assigned to a unique

group, which during the processing phase gets refined [8]. Each subsequent run of the

processing phase takes the output of the previous evaluation phase as an input. Finally,

during the evaluation phase, all possible groupings generated during the processing phase

are analysed by taking into account the number of occurrences of the single group in the

refined groups as well as the number of small groups, and a single register group is chosen

[8]. If additional information on the register sizes is provided, later referred to as steered

mode, a higher priority is assigned to the groups of specified size. As we can see from

figure 11 output of the evaluation phase is used as an input to the processing phase and final

grouping is generated once there are no changes detected between previous and current

runs. The final output of the tool contains information about detected register groups, their

predecessors, and successors. The number of detected registers and their sizes, as well

as their predecessors and successors, should provide a good indication of the similarity

between different designs.

23



4. Results

This section reports the results of our proposed methodology, based on the case study of a

GPS correlator module. We used the RTL description of the GPS correlator and generated

the results for a single design. We did not change the RTL of the design throughout the

analysis for fairness. Recalling again, the objective was to develop a key-less and structural

obfuscation methodology that would apply to circuits that have modules instantiated

multiple times. Our proposed obfuscation is key-less and infers a little overhead, or almost

zero. The performance does not impact the optimisation techniques. But, the area and

power vary therefore it should be investigated. We have used a very relaxed clock frequency

in order to allow the synthesis tool to make less constrained decisions.

4.1 Power-Performance-Area evaluations

A total of 509 unique designs were generated. Without any optimisations enabled it was

able to generate 55 designs, the rest 12 cases generated one out of 3 already existing designs.

Nevertheless, the number of duplicate designs varies depending on the optimisation strategy.

Most of the unique designs were generated by Tightening Max Transition, Retiming for

Delay, and its combination with Clock gating, however, it should be noted that ungrouping

was not able to generate a single unique design. The detailed number of unique designs

generated per optimisation technique can be seen in table 1

In table 2 we can see the minimum and maximum values of the area, number of cells,

Optimisation Strategies Unique Designs

None 55
Clock Gating 50
Ungrouping 0
Datapath Analytical 56
Bubble Pushing 53
Tighten Max Transition 62
Retiming for Delay 61
Retiming for Area 53
Clock Gating + Retiming for Delay 62
Bubble Pushing + Retiming for Area 57

Table 1. Number of unique designs generated by an optimisation strategy.

24



and dynamic and leakage powers of the generated designs, as well as the optimisation

technique used. Note that min leakage power was achieved by all optimisations except

ungrouping, datapath analytical, and tightening max transition. Together with the normal

distribution graphs 12, 13, 14, 15 below, where red dot represents the location of baseline

design, gives us an idea about the overall results. Figure 12 shows that the baseline design

is closer to the mean value. Almost half of the designs have less area as compared to the

baseline design. This is the same for the number of cells as seen in figure 13. Similarly,

the leakage power of the baseline design, figures 14, 15, are closer to the mean value.

More than half of the designs consume more leakage power as compared to the baseline

design. Regarding the dynamic power, the baseline design is far from the mean value and

a large number of designs consume higher power as compared to the baseline design. It is

noteworthy that we observe the change in the hierarchy of the structure, and the effect of

the variation is reflected in the area, number of cells, leakage power, and dynamic power.

Figure 12. PDFs of the area (µm2)

Next, we are going to observe the percentage increase and decrease of the area, number of

cells, leakage power, and dynamic power. Table 3 lists the analysis of different overheads

for their corresponding techniques. The first column lists the optimisation technique, the

second column shows the percentage increase/decrease in the area, the third column shows

the percentage increase/decrease in the number of cells, and the last two columns represent

the leakage and dynamic power.

25



Figure 13. PDFs of the number of cells

Optimisation technique
Area (µm2) Cells Leakage power (mW ) Dynamic power (mW )

Min Max Min Max Min Max Min Max

Baseline 432.9 461.6 762 845 0.012 0.013 2.368 2.414
Clock Gating 432.7 462.2 750 810 0.012 0.013 0.600 0.935
Ungrouping 432.9 461.6 762 845 0.012 0.013 2.368 2.414
Datapath Analytical 433.2 458.8 750 821 0.012 0.013 2.368 2.431
Bubble Pushing 437.1 459.1 758 840 0.012 0.013 2.293 2.469
Tightening max transition 598.8 990.3 1168 1644 0.022 0.062 0.706 2.091
Retiming for Delay 440.9 600.9 737 1047 0.012 0.018 2.944 4.398
Retiming for Area 434.7 458.8 767 840 0.012 0.013 2.399 2.460
Clock Gating + Retiming for Delay 425.2 560.9 711 966 0.012 0.018 1.084 1.562
Bubble Pushing + Retiming for Area 440.0 460.3 755 842 0.012 0.013 2.350 2.537

Table 2. Minimum and Maximum values of area, number of cells, leakage and dynamic
power of the generated designs

We note that clock gating offers a significant decrease in dynamic power. Datapath

analytical lowers area, cells, and dynamic power between 1-3%. The same is happening

for the bubble pushing. Tightening max transition has a significant impact on the area,

cells, and leakage power. But it shows a remarkable decrease in the dynamic power

(84.3%). We should note that a large number of distinct designs were generated from this

technique. The retiming for delay also has a similar behaviour for area and cells (20.18%

and 12.71% increase) but it also shows an increase in the leakage and dynamic power. The

combination of clock gating and retiming for delay shows an increase in every parameter

except dynamic power, analogous to tightening max transition. The combination of bubble

pushing and retiming for the area also shows a little increase/decrease in the parameters. In

a nutshell, all the techniques have little impact on the area, cells, and power consumption

26



Figure 14. PDFs of the leakage power (mW )

except tightening max transition, retiming for delay, and a combination of clock gating &

retiming for delay.

4.2 Dana security analysis

Dana was used in both steered and normal mode. In steered mode, register sizes of 10

and 1115 were specified. Pyvis [53] library was used to generate graphs from the results

generated by Dana. It allows us to clearly see distinctions between different groupings.

Each bubble on the graph represents a register group. The size of the bubble shows how

many bits are in the register, the larger the size of the bubble the larger the size of the

register, straight lines show the interconnection between different registers, and circular

lines are connections from the register to itself. If we take graphs in figures 16, 17, 18,

19, based on normal mode 4 major clusters were identified by Dana. Based on this, we

can conclude that there are 4 major types of designs to which all other designs converge

to. Figure 16 shows the baseline design that includes different sized registers, but it still

contains two registers with size 10, which can be a straightforward clue for an adversary

to reconstruct the registers and their connected circuitry. Nevertheless, if we examine

figures with optimisations enabled we can see that in figure 17, where we had enabled

clock gating, we can see different 10-bit registers, however, a large number of registers are

27



Figure 15. PDFs of the dynamic power (mW )

diminished and only a few of them with varying sizes are left. It allows us to clearly see

distinctions between different groupings. In these unrolled designs, the sizes of the register

do not correspond to the correct sizes declared in the RTL code. Fig. 18 shows the graph

for the synthesised design with retiming for delay. Here, we can analyse that the complete

graph consists of a large number of registers and we still can see a 10-bit register. This also

offers a unique structure of the design and DANA is unable to map it in the same way. In

the next example, shown in Fig. 19, we exploit two different optimisations (clock-gating

and retiming for delay) at the same time. Again, we obtain a distinct graph. To summarise

these results, we can confidently state that a design composed of many instances of the

same module but each instance is synthesised differently, will present itself as a challenge

to a reverse engineering adversary.

All these experiments presented so far were executed in the normal mode of DANA. Now,

we exploit the steer mode of DANA with the register size of 10-bits as shown in Fig.

20. It is a fair assumption that from a non-steered mode, an adversary might reach the

conclusion that 10-bit registers are present. We can see that the structure of the design is

explicitly different from the previous ones. DANA still is unable to highlight clues even

in steering mode. This implied a high level of obfuscation for the design. The adversary

makes use of the different reverse engineering tools along with high skills but still, it

requires an additional effort to correctly identify the design. Our applied optimisation

28



Optimisation technique Area (%) Cells (%) Dynamic Power (%) Leakage Power

Clock gating -0.3 -0.7 -119.4 0
Ungrouping 0 0 0 0
Datapath analytical -1.4 -2.9 -0.4 0
Bubble pushing -0.5 -0.7 -2.7 0
Tighten max transition +69.8 +60.1 -84.3 +131.4
Retiming for delay +20.1 +12.7 +51.3 +28.5
Retiming for area -0.5 -0.3 +0.7 0
Clock gating + Retiming for delay +18.9 +13.6 -66.5 +34.4
Bubble pushing + Retiming for area +0.4 -2.1 +4.5 0

Table 3. Percent increase/decrease in the baseline design and a variants generated with the
corresponding optimisation technique

techniques perfectly modify the structure of the design. This places barriers on DANA’s

clustering algorithm which incorrectly identifies the register group. This is the case for

every optimisation technique.

4.3 Discussion

As already mentioned we can not prevent anyone from reverse engineering the circuit,

nevertheless, we can delay it and make it an unattractive target. Moreover, since the

skills and equipment of adversaries are diverse, we can not objectively and quantitatively

measure how long it would take anyone to reverse engineer the design. As we saw in the

previous section, leveraging logic synthesis and different optimisation strategies had a

significant impact on the hierarchy of the design. Thus, the optimisation techniques are

contributing towards obfuscation, to confuse the adversary to understand the architecture of

design. Based on this we can definitely say that due to the high divergence of the generated

designs adversary would have to analyse each of them separately, thus increasing the effort

needed. Moreover, since our flow for the obfuscation is completely automated and does

not incur high overheads, nor RTL changes, it becomes a highly attractive solution for

circuit designers.

Although, it will vary from design to design, in our case study difference between designs’

areas and cell counts difference were up to 80%, in terms of dynamic power up to 150%,

and approximately 135% in terms of leakage power. Nevertheless, the average overhead

in terms of area is 16.58%, in terms of cell count 15%, in terms of dynamic power 109%,

and in terms of leakage power 40%. Even though average dynamic power is more than

doubled than the baseline version, in applications where power consumption is a priority,

tightening max transition and retiming for delay can be excluded from the list to meet the

design goals and keep overheads under control. However, many other optimisations still

remain attractive solutions.

29



Figure 16. Graph of the register group for baseline design

Figure 17. Graph of the register group for the clock-gated design

30



Figure 18. Graph of the register group for the retiming (delay)

Figure 19. Graph of the register group for the clock-gating and retiming (delay)

31



Figure 20. Graph of the register group for the clock-gating and retiming (delay) with
steered mode (Register size 10).

32



5. Conclusions

The advancements in IC production and the increasing availability of reverse engineering

tools highlighted the need for hardware security. This is why in this thesis we presented a

novel approach to generating hundreds of unique designs from a single one, in an attempt

to confuse the adversary and delay the reverse engineering of the design. We demonstrated

in the case study of a GPS correlator the effectiveness of the approach and analysed the

overhead in terms of area and power. We saw that generated designs were clustered in

multiple groups by the state of the art reverse engineering tool DANA, which means that

the adversary would have to put an extra effort to analyse them separately. Even though

in our case study the average dynamic and leakage powers increased significantly, the

results will vary from design to design and the synthesis tools utilised. Nevertheless,

the approach showed promising results, meaning that it could help protect circuits that

instantiate the same module multiple times. Despite promising results, due to the high

range of adversary’s skills and equipment, it is impossible to quantitatively measure how

much harder it is to reverse engineer and the amount of additional effort needed to learn

the complete functionality of the circuit.

In the future, another synthesis tool can be used with both academic and commercial cell

libraries. Moreover, other reverse engineering tools such as RELIC can be used to analyse

the designs. Additionally, the ICs can be manufactured and analysed to examine whether

design diversity holds after physical implementation. Moreover, since the synthesis of

larger circuits is time consuming, synthesising hundreds of designs when only several of

them are needed is inefficient thus a methodology can be developed which can suggest

which optimisation strategy to utilise and what would be the approximate divergence from

the baseline version.

33



Bibliography

[1] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. “A Primer on Hardware

Security: Models, Methods, and Metrics”. In: Proceedings of the IEEE 102.8 (2014),

pp. 1283–1295. DOI: 10.1109/jproc.2014.2335155.

[2] Ed Sperling. Fundamental changes in economics of Chip Security. 2020. URL:

https : / / semiengineering . com / fundamental - changes - in -

economics-of-security/.

[3] Yiran Chen et al. “A Survey of Accelerator Architectures for Deep Neural Net-

works”. In: Engineering 6.3 (2020), pp. 264–274. ISSN: 2095-8099. DOI: https:

//doi.org/10.1016/j.eng.2020.01.007. URL: https://www.

sciencedirect.com/science/article/pii/S2095809919306356.

[4] Hadi Esmaeilzadeh et al. “Neural Acceleration for General-Purpose Approximate

Programs”. In: 2012 45th Annual IEEE/ACM International Symposium on Microar-

chitecture. 2012, pp. 449–460. DOI: 10.1109/MICRO.2012.48.

[5] Mark C. Hansen, Hakan Yalcin, and John P. Hayes. “Unveiling the ISCAS-85

benchmarks: a case study in reverse engineering”. In: IEEE Design & Test of

Computers 16.3 (1999), pp. 72–80. DOI: 10.1109/54.785838.

[6] Pramod Subramanyan et al. “Reverse Engineering Digital Circuits Using Functional

Analysis”. In: Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2013. IEEE Conference Publications, 2013. DOI: 10.7873/date.

2013.264.

[7] Wenchao Li, Zach Wasson, and Sanjit A. Seshia. “Reverse engineering circuits using

behavioral pattern mining”. In: 2012 IEEE International Symposium on Hardware-

Oriented Security and Trust. IEEE, 2012. DOI: 10.1109/hst.2012.6224325.

[8] Nils Albartus et al. “DANA Universal Dataflow Analysis for Gate-Level Netlist

Reverse Engineering”. In: IACR Transactions on Cryptographic Hardware and

Embedded Systems (2020), pp. 309–336. DOI: 10.46586/tches.v2020.i4.

309-336.

[9] Stjepan Picek et al. “Side-channel analysis and machine learning: A practical

perspective”. In: 2017 International Joint Conference on Neural Networks (IJCNN).

2017, pp. 4095–4102. DOI: 10.1109/IJCNN.2017.7966373.

34



[10] Mark Randolph and William Diehl. “Power side-channel attack analysis: A review

of 20 years of study for the layman”. In: Cryptography 4.2 (2020), p. 15.

[11] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template attacks”. In: Inter-

national Workshop on Cryptographic Hardware and Embedded Systems. Springer.

2002, pp. 13–28.

[12] John Demme et al. “Side-channel vulnerability factor: A metric for measuring

information leakage”. In: 2012 39th Annual International Symposium on Computer

Architecture (ISCA). IEEE. 2012, pp. 106–117.

[13] Mohammad Tehranipoor and Farinaz Koushanfar. “A Survey of Hardware Trojan

Taxonomy and Detection”. In: IEEE Design Test of Computers 27.1 (2010), pp. 10–

25. DOI: 10.1109/MDT.2010.7.

[14] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. “Detecting mali-

cious inclusions in secure hardware: Challenges and solutions”. In: 2008 IEEE

International Workshop on Hardware-Oriented Security and Trust. IEEE. 2008,

pp. 15–19.

[15] Andrew B. Kahng et al. “Watermarking techniques for intellectual property pro-

tection”. In: Proceedings of the 35th annual Design Automation Conference. 1998,

pp. 776–781.

[16] Tiago D. Perez and Samuel Pagliarini. “A Survey on Split Manufacturing: Attacks,

Defenses, and Challenges”. In: IEEE Access 8 (2020), pp. 184013–184035. DOI:

10.1109/ACCESS.2020.3029339.

[17] Takeshi Sugawara et al. “Reversing Stealthy Dopant-Level Circuits”. In: Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp. 112–126. DOI:

10.1007/978-3-662-44709-3_7.

[18] Arunkumar Vijayakumar et al. “Physical Design Obfuscation of Hardware: A

Comprehensive Investigation of Device and Logic-Level Techniques”. In: IEEE

Transactions on Information Forensics and Security 12.1 (2017), pp. 64–77. DOI:

10.1109/tifs.2016.2601067.

[19] James C. Tsang, Jeffrey A. Kash, and David P. Vallett. “Picosecond imaging circuit

analysis”. In: IBM Journal of Research and Development 44.4 (2000), pp. 583–603.

DOI: 10.1147/rd.444.0583.

[20] Jeyavijayan Rajendran et al. “Security analysis of integrated circuit camouflaging”.

In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communica-

tions security. 2013, pp. 709–720.

35



[21] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. “EPIC: Ending Piracy of

Integrated Circuits”. In: 2008 Design, Automation and Test in Europe. IEEE, 2008.

DOI: 10.1109/date.2008.4484823.

[22] Jeyavijayan Rajendran et al. “Security analysis of logic obfuscation”. In: Proceed-

ings of the 49th Annual Design Automation Conference on - DAC ’12. ACM Press,

2012. DOI: 10.1145/2228360.2228377.

[23] Sarah Amir et al. “Development and Evaluation of Hardware Obfuscation Bench-

marks”. In: Journal of Hardware and Systems Security 2.2 (2018), pp. 142–161.

DOI: 10.1007/s41635-018-0036-3.

[24] Pramod Subramanyan, Sayak Ray, and Sharad Malik. “Evaluating the security of

logic encryption algorithms”. In: 2015 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST). IEEE. 2015, pp. 137–143.

[25] Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. “SAIL: Machine

learning guided structural analysis attack on hardware obfuscation”. In: 2018 Asian

Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE. 2018,

pp. 56–61.

[26] Yang Xie and Ankur Srivastava. “Anti-SAT: Mitigating SAT attack on logic locking”.

In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

38.2 (2018), pp. 199–207.

[27] Javier M. Duarte et al. “Fast inference of deep neural networks in FPGAs for particle

physics”. In: Journal of Instrumentation 13.07 (2018).

[28] Homer Hsing. AES-128. 2013. URL: https://opencores.org/projects/

tiny%5C_aes.

[29] Zhaokun Han, Muhammad Yasin, and Jeyavijayan (JV) Rajendran. “Does logic

locking work with EDA tools?” In: 30th USENIX Security Symposium (USENIX

Security 21). USENIX Association, 2021, pp. 1055–1072. ISBN: 978-1-939133-24-3.

URL: https://www.usenix.org/conference/usenixsecurity21/

presentation/han-zhaokun.

[30] Sophie Dupuis and Marie-Lise Flottes. “Logic Locking: A Survey of Proposed

Methods and Evaluation Metrics”. In: Journal of Electronic Testing 35.3 (2019),

pp. 273–291. DOI: 10.1007/s10836-019-05800-4. URL: https://hal-

lirmm.ccsd.cnrs.fr/lirmm-02128826.

[31] Jitesh Shinde and Suresh S. Salankar. “Clock gating — A power optimizing tech-

nique for VLSI circuits”. In: 2011 Annual IEEE India Conference. 2011, pp. 1–4.

DOI: 10.1109/INDCON.2011.6139440.

36



[32] Prasanth Chatarasi et al. “Vyasa: A High-Performance Vectorizing Compiler for

Tensor Convolutions on the Xilinx AI Engine”. In: 2020 IEEE High Performance Ex-

treme Computing Conference (HPEC). IEEE, 2020. DOI: 10.1109/hpec43674.

2020.9286183.

[33] Nandita Srinivasan et al. “Power Reduction by Clock Gating Technique”. In: Proce-

dia Technology 21 (2015), pp. 631–635. DOI: 10.1016/j.protcy.2015.10.

075.

[34] Smitha Iyengar and Lakshmi Shrinivasan. “Power, Performance and Area Optimiza-

tion of I/O Design”. In: 2018 International Conference on Inventive Research in

Computing Applications (ICIRCA). IEEE, 2018. DOI: 10.1109/icirca.2018.

8597347.

[35] Naushad Manzoor Laskar et al. “A survey on VLSI Floorplanning: Its representation

and modern approaches of optimization”. In: 2015 International Conference on

Innovations in Information, Embedded and Communication Systems (ICIIECS).

IEEE, 2015. DOI: 10.1109/iciiecs.2015.7192989.

[36] Hsun-Cheng Lee et al. “Multilevel floorplanning/placement for large-scale modules

using B∗ − trees”. In: Proceedings of the 40th conference on Design automation -

DAC ’03. ACM Press, 2003. DOI: 10.1145/775832.776037.

[37] Igor L. Markov, Jin Hu, and Myung-Chul Kim. “Progress and Challenges in VLSI

Placement Research”. In: Proceedings of the IEEE 103.11 (2015), pp. 1985–2003.

DOI: 10.1109/jproc.2015.2478963.

[38] Sheng Chou, Meng-Kai Hsu, and Yao-Wen Chang. “Structure-aware placement for

datapath-intensive circuit designs”. In: Proceedings of the 49th Annual Design Au-

tomation Conference on - DAC ’12. ACM Press, 2012. DOI: 10.1145/2228360.

2228498.

[39] Minsik Cho et al. “LatchPlanner: Latch placement algorithm for datapath-oriented

high-performance VLSI designs”. In: 2013 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). IEEE, 2013. DOI: 10.1109/iccad.2013.

6691141.

[40] Thomas Kutzschebauch and Leon Stok. “Regularity driven logic synthesis”. In:

IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000.

IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140). IEEE. DOI: 10.

1109/iccad.2000.896511.

[41] Samuel Pagliarini et al. “Evaluating Architectural, Redundancy, and Implementa-

tion Strategies for Radiation Hardening of FinFET Integrated Circuits”. In: IEEE

Transactions on Nuclear Science 68.5 (2021), pp. 1045–1053. DOI: 10.1109/

tns.2021.3070643.

37



[42] Tyler J. Thorp, Gin S. Yee, and Carl M. Sechen. “Design and synthesis of dynamic

circuits”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems

11.1 (2003), pp. 141–149. DOI: 10.1109/tvlsi.2002.800518.

[43] Chin-Chi Teng, Anthony M. Hill, and Sung-Mo Kang. “Estimation of maximum

transition counts at internal nodes in CMOS VLSI circuits”. In: Proceedings of

IEEE International Conference on Computer Aided Design (ICCAD). IEEE Comput.

Soc. Press. DOI: 10.1109/iccad.1995.480142.

[44] Yajun Ran et al. “Eliminating false positives in crosstalk noise analysis”. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 24.9

(2005), pp. 1406–1419. DOI: 10.1109/tcad.2005.850829.

[45] Mohamed Chentouf and Alaoui Zine El Abidine. “Evaluating the Impact of Max

Transition Constraint Variations on Power Reduction Capabilities in Cell-Based

Designs”. In: Journal of Low Power Electronics and Applications 7.4 (2017), p. 25.

DOI: 10.3390/jlpea7040025.

[46] Jason Cong et al. “Performance optimization of VLSI interconnect layout”. In:

Integration 21.1-2 (1996), pp. 1–94. DOI: 10.1016/s0167-9260(96)00008-

9.

[47] Naresh Maheshwari and Sachin Sapatnekar. “Efficient retiming of large circuits”.

In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 6.1 (1998),

pp. 74–83. DOI: 10.1109/92.661250.

[48] Nagesh Shenoy and Richard Rudell. “Efficient Implementation Of Retiming”. In:

IEEE/ACM International Conference on Computer-Aided Design. IEEE. DOI: 10.

1109/iccad.1994.629770.

[49] Charles E. Leiserson, Flavio M. Rose, and James B. Saxe. “Optimizing Synchronous

Circuitry by Retiming (Preliminary Version)”. In: Third Caltech Conference on

Very Large Scale Integration. Springer Berlin Heidelberg, 1983, pp. 87–116. DOI:

10.1007/978-3-642-95432-0_7.

[50] Vinita Pandey, Subhash C. Yadav, and Priya Arora. “Retiming technique for clock

period minimization using shortest path algorithm”. In: 2016 International Confer-

ence on Computing, Communication and Automation (ICCCA). IEEE, 2016. DOI:

10.1109/ccaa.2016.7813942.

[51] Embedded Security Group. HAL - The Hardware Analyzer. https://github.

com/emsec/hal. 2019.

[52] Marc Fyrbiak et al. “HAL- The Missing Piece of the Puzzle for Hardware Reverse

Engineering, Trojan Detection and Insertion”. In: IEEE Transactions on Dependable

and Secure Computing (2018).

38



[53] West Health Institute. Pyvis. https://github.com/WestHealth/pyvis.

2018.

39



Appendices

Appendix 1 - GPS Correlator Code

module c o r _ f l e x ( c lk , r s t _ n , enab l e , d a t a _ f r o m _ s e n s o r , s a t e l l i t e , o f f s e t , k e y _ b i t s , k e y _ s e l , locked , r a n k i n g ) ;

input c l k ;

input r s t _ n ;

input e n a b l e ;

input d a t a _ f r o m _ s e n s o r ;

input [ 4 : 0 ] s a t e l l i t e ; / / range i s [ 0 . . 3 1 ] , so 5 b i t s are needed

input [ 9 : 0 ] o f f s e t ; / / range i s [ 0 . . 1 0 2 2 ] , so 10 b i t s are neede

input [ 3 : 0 ] k e y _ b i t s ;

input [ 1 : 0 ] k e y _ s e l ;

output reg l o c k e d ;

output reg s i g ned [ 10 : 0 ] r a n k i n g ; / / b e s t cas e s c e n a r i o w i l l have a match on a l l 1023 b i t s . I need 10 b i t s t o s t o r e

t h a t . p l u s one f o r s i g n a l

localparam STATE_SIZE = 4 ;

localparam WAITING = 4 ’ d0 ;

localparam DECIDING = 4 ’ d1 ;

localparam OFFSETTING = 4 ’ d2 ;

localparam RUNNING = 4 ’ d3 ;

localparam IDLE = 4 ’ d4 ;

localparam LOCKED = 4 ’ d5 ;

localparam READ_RANK = 4 ’ d6 ;

localparam SETTING = 4 ’ d7 ;

localparam DIVIDING = 4 ’ d8 ;

localparam CRCING = 4 ’ d9 ;

localparam LOADING= 4 ’ d10 ;

reg [ STATE_SIZE−1 : 0 ] s t a t e , n e x t _ s t a t e ;

reg [ 4 : 0 ] l o c a l _ s a t e l l i t e , n e x t _ l o c a l _ s a t e l l i t e ;

reg [ 9 : 0 ] l o c a l _ o f f s e t , n e x t _ l o c a l _ o f f s e t ;

reg [ 9 : 0 ] l o c a l _ g 1 _ s e t t i n g , n e x t _ g 1 _ s e t t i n g ;

reg [ 9 : 0 ] l o c a l _ r u n t i m e , n e x t _ r u n t i m e ;

reg d i v _ s e l , n e x t _ d i v _ s e l ;

reg n e x t _ l o c k e d ;

reg [ 10 : 0 ] n e x t _ r a n k i n g ;

localparam SEQ_SIZE = 1023 ;

localparam SEQ_SIZE_LIMIT = 10 ’ d1022 ;

localparam SEED = 10 ’ b1111111111 ;

reg [ 9 : 0 ] g1 , nex t_g1 ; / / G1 has f e e d b a c k from p o s i t i o n 3 and 10 , and i t i s c o n s t a n t f o r a l l s a t e l l i t e s

wire t a p _ f o r _ g 1 _ g 6 ;

wire and_out_g6 ;

and ( and_out_g6 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 6 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 6 , g1 [ 5 ] , and_out_g6 ) ;

wire t a p _ f o r _ g 1 _ g 2 ;

wire and_out_g2 ;

and ( and_out_g2 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 2 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 2 , g1 [ 1 ] , and_out_g2 ) ;

wire t a p _ f o r _ g 1 _ g 1 ;

wire and_out_g1 ;

and ( and_out_g1 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 1 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 1 , g1 [ 0 ] , and_out_g1 ) ;

wire t a p _ f o r _ g 1 _ g 3 ;

wire and_out_g3 ;

40



and ( and_out_g3 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 3 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 3 , g1 [ 2 ] , and_out_g3 ) ;

wire t a p _ f o r _ g 1 _ g 4 ;

wire and_out_g4 ;

and ( and_out_g4 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 4 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 4 , g1 [ 3 ] , and_out_g4 ) ;

wire t a p _ f o r _ g 1 _ g 5 ;

wire and_out_g5 ;

and ( and_out_g5 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 5 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 5 , g1 [ 4 ] , and_out_g5 ) ;

wire t a p _ f o r _ g 1 _ g 7 ;

wire and_out_g7 ;

and ( and_out_g7 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 7 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 7 , g1 [ 6 ] , and_out_g7 ) ;

wire t a p _ f o r _ g 1 _ g 8 ;

wire and_out_g8 ;

and ( and_out_g8 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 8 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 8 , g1 [ 7 ] , and_out_g8 ) ;

wire t a p _ f o r _ g 1 _ g 9 ;

wire and_out_g9 ;

and ( and_out_g9 , g1 [ 9 ] , l o c a l _ g 1 _ s e t t i n g [ 9 ] ) ;

xor ( t a p _ f o r _ g 1 _ g 9 , g1 [ 8 ] , and_out_g9 ) ;

wire d i v i d _ i n ;

xor ( d i v i d _ i n , g1 [ 9 ] , d a t a _ f r o m _ s e n s o r ) ;

wire t a p _ f o r _ g 1 _ g 0 ;

a s s i g n t a p _ f o r _ g 1 _ g 0 = d i v _ s e l ? d i v i d _ i n : g1 [ 9 ] ;

reg [ 9 : 0 ] g2 , nex t_g2 ;

wire t a p _ f o r _ g 2 ;

xor ( t a p _ f o r _ g 2 , g2 [ 1 ] , g2 [ 2 ] , g2 [ 5 ] , g2 [ 7 ] , g2 [ 8 ] , g2 [ 9 ] ) ; / / G2 has f e e d b a c k from 2 , 3 , 6 , 8 , 9 , and 1 0 . c o n s t a n t f o r a l l

s a t e l l i t e s

wire f i n a l _ s u m 1 ;

xor ( f i na l _ s um1 , g1 [ 6 ] , g2 [ 1 ] , g2 [ 5 ] ) ;

wire f i n a l _ s u m 2 ;

xor ( f i na l _ s um2 , g1 [ 6 ] , g2 [ 2 ] , g2 [ 6 ] ) ;

wire f i n a l _ s u m 3 ;

xor ( f i na l _ s um3 , g1 [ 6 ] , g2 [ 3 ] , g2 [ 7 ] ) ;

wire f i n a l _ s u m 4 ;

xor ( f i na l _ s um4 , g1 [ 6 ] , g2 [ 4 ] , g2 [ 8 ] ) ;

wire f i n a l _ s u m 5 ;

xor ( f i na l _ s um5 , g1 [ 6 ] , g2 [ 0 ] , g2 [ 8 ] ) ;

wire f i n a l _ s u m 6 ;

xor ( f i na l _ s um6 , g1 [ 6 ] , g2 [ 1 ] , g2 [ 9 ] ) ;

wire f i n a l _ s u m 7 ;

xor ( f i na l _ s um7 , g1 [ 6 ] , g2 [ 0 ] , g2 [ 7 ] ) ;

wire f i n a l _ s u m 8 ;

xor ( f i na l _ s um8 , g1 [ 6 ] , g2 [ 1 ] , g2 [ 8 ] ) ;

wire f i n a l _ s u m 9 ;

xor ( f i na l _ s um9 , g1 [ 6 ] , g2 [ 2 ] , g2 [ 9 ] ) ;

wire f i n a l _ s u m 1 0 ;

xor ( f i na l_ sum10 , g1 [ 6 ] , g2 [ 1 ] , g2 [ 2 ] ) ;

wire f i n a l _ s u m 1 1 ;

xor ( f i na l_ sum11 , g1 [ 6 ] , g2 [ 2 ] , g2 [ 3 ] ) ;

wire f i n a l _ s u m 1 2 ;

xor ( f i na l_ sum12 , g1 [ 6 ] , g2 [ 4 ] , g2 [ 5 ] ) ;

wire f i n a l _ s u m 1 3 ;

41



xor ( f i na l_ sum13 , g1 [ 6 ] , g2 [ 5 ] , g2 [ 6 ] ) ;

wire f i n a l _ s u m 1 4 ;

xor ( f i na l_ sum14 , g1 [ 6 ] , g2 [ 6 ] , g2 [ 7 ] ) ;

wire f i n a l _ s u m 1 5 ;

xor ( f i na l_ sum15 , g1 [ 6 ] , g2 [ 7 ] , g2 [ 8 ] ) ;

wire f i n a l _ s u m 1 6 ;

xor ( f i na l_ sum16 , g1 [ 6 ] , g2 [ 8 ] , g2 [ 9 ] ) ;

wire f i n a l _ s u m 1 7 ;

xor ( f i na l_ sum17 , g1 [ 6 ] , g2 [ 0 ] , g2 [ 3 ] ) ;

wire f i n a l _ s u m 1 8 ;

xor ( f i na l_ sum18 , g1 [ 6 ] , g2 [ 1 ] , g2 [ 4 ] ) ;

wire f i n a l _ s u m 1 9 ;

xor ( f i na l_ sum19 , g1 [ 6 ] , g2 [ 2 ] , g2 [ 5 ] ) ;

wire f i n a l _ s u m 2 0 ;

xor ( f i na l_ sum20 , g1 [ 6 ] , g2 [ 3 ] , g2 [ 6 ] ) ;

wire f i n a l _ s u m 2 1 ;

xor ( f i na l_ sum21 , g1 [ 6 ] , g2 [ 4 ] , g2 [ 7 ] ) ;

wire f i n a l _ s u m 2 2 ;

xor ( f i na l_ sum22 , g1 [ 6 ] , g2 [ 5 ] , g2 [ 8 ] ) ;

wire f i n a l _ s u m 2 3 ;

xor ( f i na l_ sum23 , g1 [ 6 ] , g2 [ 0 ] , g2 [ 2 ] ) ;

wire f i n a l _ s u m 2 4 ;

xor ( f i na l_ sum24 , g1 [ 6 ] , g2 [ 3 ] , g2 [ 5 ] ) ;

wire f i n a l _ s u m 2 5 ;

xor ( f i na l_ sum25 , g1 [ 6 ] , g2 [ 4 ] , g2 [ 6 ] ) ;

wire f i n a l _ s u m 2 6 ;

xor ( f i na l_ sum26 , g1 [ 6 ] , g2 [ 5 ] , g2 [ 7 ] ) ;

wire f i n a l _ s u m 2 7 ;

xor ( f i na l_ sum27 , g1 [ 6 ] , g2 [ 6 ] , g2 [ 8 ] ) ;

wire f i n a l _ s u m 2 8 ;

xor ( f i na l_ sum28 , g1 [ 6 ] , g2 [ 7 ] , g2 [ 9 ] ) ;

wire f i n a l _ s u m 2 9 ;

xor ( f i na l_ sum29 , g1 [ 6 ] , g2 [ 0 ] , g2 [ 5 ] ) ;

wire f i n a l _ s u m 3 0 ;

xor ( f i na l_ sum30 , g1 [ 6 ] , g2 [ 1 ] , g2 [ 6 ] ) ;

wire f i n a l _ s u m 3 1 ;

xor ( f i na l_ sum31 , g1 [ 6 ] , g2 [ 2 ] , g2 [ 7 ] ) ;

wire f i n a l _ s u m 3 2 ;

xor ( f i na l_ sum32 , g1 [ 6 ] , g2 [ 3 ] , g2 [ 8 ] ) ;

reg u s e _ t h i s _ s u m ;

always @( * ) begin

u s e _ t h i s _ s u m = 0 ;

cas e ( l o c a l _ s a t e l l i t e )

5 ’ d0 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 ;

5 ’ d1 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 ;

5 ’ d2 : u s e _ t h i s _ s u m = f i n a l _ s u m 3 ;

5 ’ d3 : u s e _ t h i s _ s u m = f i n a l _ s u m 4 ;

5 ’ d4 : u s e _ t h i s _ s u m = f i n a l _ s u m 5 ;

5 ’ d5 : u s e _ t h i s _ s u m = f i n a l _ s u m 6 ;

5 ’ d6 : u s e _ t h i s _ s u m = f i n a l _ s u m 7 ;

5 ’ d7 : u s e _ t h i s _ s u m = f i n a l _ s u m 8 ;

5 ’ d8 : u s e _ t h i s _ s u m = f i n a l _ s u m 9 ;

5 ’ d9 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 0 ;

5 ’ d10 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 1 ;

5 ’ d11 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 2 ;

5 ’ d12 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 3 ;

5 ’ d13 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 4 ;

5 ’ d14 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 5 ;

5 ’ d15 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 6 ;

42



5 ’ d16 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 7 ;

5 ’ d17 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 8 ;

5 ’ d18 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 9 ;

5 ’ d19 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 0 ;

5 ’ d20 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 1 ;

5 ’ d21 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 2 ;

5 ’ d22 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 3 ;

5 ’ d23 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 4 ;

5 ’ d24 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 5 ;

5 ’ d25 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 6 ;

5 ’ d26 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 7 ;

5 ’ d27 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 8 ;

5 ’ d28 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 9 ;

5 ’ d29 : u s e _ t h i s _ s u m = f i n a l _ s u m 3 0 ;

5 ’ d30 : u s e _ t h i s _ s u m = f i n a l _ s u m 3 1 ;

5 ’ d31 : u s e _ t h i s _ s u m = f i n a l _ s u m 3 2 ;

endcase

end

wire p a r t i a l _ s c o r e ;

reg d a t a _ f r o m _ s e n s o r _ c o p y ;

xor ( p a r t i a l _ s c o r e , u s e_ t h i s _ s um , d a t a _ f r o m _ s e n s o r _ c o p y ) ;

reg sum1 , sub1 ;

reg next_sum1 , n e x t _ s u b 1 ;

reg temp , nex t_ temp ;

always @( posedge c l k ) begin

i f ( r s t _ n == 1 ’ b0 ) begin

s t a t e <= WAITING ;

g1 <= SEED ;

g2 <= SEED ;

l o c a l _ s a t e l l i t e <= 5 ’ d0 ;

l o c a l _ o f f s e t <= 10 ’ d0 ;

l o c a l _ g 1 _ s e t t i n g <= 10 ’ d0 ;

l o c k e d <= 1 ’ b0 ;

l o c a l _ r u n t i m e <= 10 ’ d0 ;

r a n k i n g <= 10 ’ d0 ;

sum1 <= 1 ’ b0 ;

sub1 <= 1 ’ b0 ;

d i v _ s e l <=1’ b0 ;

temp <= 1 ’ b0 ;

d a t a _ f r o m _ s e n s o r _ c o p y = 0 ;

end

e l s e begin

s t a t e <= n e x t _ s t a t e ;

g1 <= nex t_g1 ;

g2 <= nex t_g2 ;

d i v _ s e l <= n e x t _ d i v _ s e l ;

l o c a l _ s a t e l l i t e <= n e x t _ l o c a l _ s a t e l l i t e ;

l o c a l _ g 1 _ s e t t i n g <= n e x t _ g 1 _ s e t t i n g ;

l o c a l _ o f f s e t <= n e x t _ l o c a l _ o f f s e t ;

l o c k e d <= n e x t _ l o c k e d ;

r a n k i n g <= n e x t _ r a n k i n g ;

l o c a l _ r u n t i m e <= n e x t _ r u n t i m e ;

sum1 <= next_sum1 ;

sub1 <= n e x t _ s u b 1 ;

temp <= nex t_ temp ;

d a t a _ f r o m _ s e n s o r _ c o p y = d a t a _ f r o m _ s e n s o r ;

end

end

always @( * ) begin

n e x t _ s t a t e = WAITING ;

nex t_g1 = g1 ;

nex t_g2 = g2 ;

n e x t _ d i v _ s e l = 1 ’ b0 ;

n e x t _ r u n t i m e = l o c a l _ r u n t i m e ;

n e x t _ l o c a l _ s a t e l l i t e = l o c a l _ s a t e l l i t e ;

n e x t _ l o c a l _ o f f s e t = l o c a l _ o f f s e t ;

n e x t _ g 1 _ s e t t i n g = l o c a l _ g 1 _ s e t t i n g ;

n e x t _ l o c k e d = 1 ’ b0 ;

next_sum1 = 1 ’ b0 ;

n e x t _ s u b 1 = 1 ’ b0 ;

n e x t _ r a n k i n g = r a n k i n g ;

nex t_ temp = temp ;

43



i f ( sum1 ) begin

n e x t _ r a n k i n g = r a n k i n g + o f f s e t [ 9 : 5 ] * o f f s e t [ 4 : 0 ] ;

end

e l s e i f ( sub1 ) begin

n e x t _ r a n k i n g = r a n k i n g − o f f s e t [ 9 : 5 ] * o f f s e t [ 4 : 0 ] ;

end

cas e ( s t a t e )

WAITING : begin

i f ( e n a b l e ) begin

n e x t _ l o c a l _ s a t e l l i t e = s a t e l l i t e ;

n e x t _ l o c a l _ o f f s e t = o f f s e t ; / / c o p i e s from t h e i n p u t

n e x t _ s t a t e = SETTING ;

end

nex t_ temp = k e y _ b i t s [ k e y _ s e l ] ;

end

SETTING : begin

n e x t _ g 1 _ s e t t i n g = o f f s e t ;

n e x t _ s t a t e = LOADING;

end

LOADING: begin

n e x t _ r u n t i m e = o f f s e t ;

n e x t _ s t a t e = DECIDING ;

end

DECIDING : begin

i f ( s a t e l l i t e == 5 ’ b00101 ) begin

n e x t _ s t a t e = SETTING ;

end

e l s e i f ( s a t e l l i t e == 5 ’ b01001 ) begin

n e x t _ s t a t e = DIVIDING ;

n e x t _ d i v _ s e l = 1 ’ b1 ;

end

e l s e i f ( l o c a l _ o f f s e t != 0 ) begin

n e x t _ s t a t e = OFFSETTING ;

nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;

nex t_g2 = { g2 [ 8 : 0 ] , t a p _ f o r _ g 2 } ; / / b u t t h i s doesn ’ t c o u n t as o f f s e t .

end

e l s e begin

n e x t _ s t a t e = RUNNING;

nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;

nex t_g2 = { g2 [ 8 : 0 ] , t a p _ f o r _ g 2 } ; / / b u t t h i s doesn ’ t c o u n t as o f f s e t .

end

end

DIVIDING : begin

n e x t _ r u n t i m e = l o c a l _ r u n t i m e − 10 ’ d1 ;

nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;

i f ( l o c a l _ r u n t i m e == 10 ’ d0 ) begin

n e x t _ d i v _ s e l = 1 ’ b0 ;

i f ( s a t e l l i t e == 5 ’ b01101 ) begin

n e x t _ s t a t e = IDLE ;

end

e l s e i f ( s a t e l l i t e == 5 ’ b01100 ) begin

n e x t _ s t a t e = SETTING ;

end

e l s e i f ( s a t e l l i t e == 5 ’ b01000 ) begin

n e x t _ s t a t e = LOADING;

end

e l s e i f ( s a t e l l i t e == 5 ’ b00001 ) begin

n e x t _ s t a t e = DECIDING ;

end

n e x t _ r u n t i m e = o f f s e t ;

n e x t _ s t a t e = RUNNING;

end

e l s e begin

n e x t _ s t a t e = DIVIDING ;

n e x t _ d i v _ s e l = 1 ’ b1 ;

n e x t _ r a n k i n g = { r a n k i n g [ 9 : 0 ] , g1 [ 9 ] } ;

end

end

OFFSETTING : begin

n e x t _ l o c a l _ o f f s e t = l o c a l _ o f f s e t − 10 ’ d1 ;

nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;

nex t_g2 = { g2 [ 8 : 0 ] , t a p _ f o r _ g 2 } ;

44



i f ( l o c a l _ o f f s e t != 1 ) begin

n e x t _ s t a t e = OFFSETTING ;

end

e l s e begin

n e x t _ s t a t e = RUNNING;

end

end

RUNNING: begin

n e x t _ r u n t i m e = l o c a l _ r u n t i m e − 10 ’ d1 ;

i f ( s a t e l l i t e == 5 ’ b0000 ) begin

nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;

nex t_g2 = { g2 [ 8 : 0 ] , t a p _ f o r _ g 2 } ;

i f ( p a r t i a l _ s c o r e == 1 ’ b0 ) begin / / meaning t h e y are t h e same ( remember i t i s XORed )

next_sum1 = 1 ’ b1 ;

end

e l s e begin

n e x t _ s u b 1 = 1 ’ b1 ;

end

end

e l s e i f ( s a t e l l i t e == 5 ’ b00101 ) begin / / meaning t h e y are t h e same ( remember i t i s XORed )

n e x t _ s u b 1 =1 ’ b1 ;

end

e l s e begin

next_sum1 = 1 ’ b1 ;

end

i f ( l o c a l _ r u n t i m e ==10 ’ d0 ) begin

i f ( s a t e l l i t e == 5 ’ b00010 ) begin

n e x t _ s t a t e = DIVIDING ;

end

e l s e i f ( s a t e l l i t e == 5 ’ b00011 ) begin

n e x t _ s t a t e = SETTING ;

end

e l s e i f ( s a t e l l i t e == 5 ’ b00111 ) begin

n e x t _ s t a t e = LOADING;

end

e l s e i f ( s a t e l l i t e == 5 ’ b01110 ) begin

n e x t _ s t a t e = DECIDING ;

n e x t _ r u n t i m e = o f f s e t ;

end

e l s e begin

n e x t _ s t a t e = IDLE ;

end

end

e l s e begin

n e x t _ s t a t e = RUNNING;

end

end

IDLE : begin

/ / I need t h i s i d l e s t a t e t o a l l o w f o r t h e r a n k i n g t o

/ / update , i t i s p i p e l i n e d

n e x t _ l o c k e d = 1 ’ b1 ;

n e x t _ s t a t e = LOCKED;

end

LOCKED: begin

n e x t _ s t a t e = READ_RANK & { temp , temp , temp } ;

end

READ_RANK: begin

/ / I need t h i s s t a t e t o a l l o w t h e r a n k i n g s t o be

/ / p r o p a g a t e d o u t s i d e

n e x t _ s t a t e = WAITING ;

n e x t _ r a n k i n g = 10 ’ d0 ;

end

endcase

end

endmodule

45


