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1 Introduction

The world is becoming increasingly digitized and connected, and ensuring the security
and privacy of sensitive information has become a critical concern for individuals
and organizations. The exponential growth of the internet has opened up many
opportunities, but at the same time, it has also created new challenges. Recently, in
[1], the International Telecommunications Union (ITU) announced that internet users
increased from 400 million (in 2000) to 4.9 billion (in 2021). According to Snowden’s
report [2], in 2013, this growth rate is expected to be higher. The proliferation of
internet users has increased numerous data breaches and cyber attacks in recent years,
which have led to the theft of sensitive information, such as personal and financial
data. These incidents have not only resulted in significant financial losses but have
also damaged the reputation of organizations and eroded public trust. Various security
measures have been developed and implemented to address these concerns, such as
encryption/decryption [3], firewalls [4], and access controls [5]. However, despite these
measures, the threat of cyber attacks remains a constant, and organizations must
remain vigilant and take proactive measures to protect sensitive information. Hence,
the increasing connectivity of the world has highlighted the importance of data security
and privacy.

Cryptography is one of the techniques to protect sensitive information using math-
ematical problems [6]. It transforms original information/data into a format that
humans cannot understand. The original information is called plaintext, while the
text obtained after some mathematical operations is a ciphertext. The sequence of
operations to obtain ciphertext from plaintext and vice versa determines a cryptographic
algorithm/protocol. The current cryptographic schemes are categorized into symmetric
and public-key cryptography (PKC). The sender and the recipient share a common
key for encrypting and decrypting the message in symmetric key cryptography. The
encryption is a transformation of plaintext into ciphertext, while the conversion back
from ciphertext to plaintext is a decryption. Using a common key in symmetric schemes
makes symmetric cryptographic algorithms faster and more efficient for encrypting
and decrypting large amounts of data. They are also more suitable for low-resource
platforms such as wireless sensor nodes because they require less processing power and
memory. However, the challenge with symmetric schemes is that the common key
needs to be shared over an unsecured channel between two parties (sender and receiver),
which makes it potentially vulnerable to attacks.

On the other hand, PKC uses two keys, public and private. The public key is widely
available and can be used by anyone to encrypt original information/data, while the
private key is kept secret by the recipient and is used to decrypt the data. This makes
PKC schemes secure, especially for applications that require longer-term security or
when the parties involved have no prior relationship or secure communication channel.
However, public-key schemes are typically slower and require more processing power
and memory than symmetric schemes.

The choice of the cryptographic scheme depends on the specific requirements of the
application or platform, such as the level of security needed. PKC-based cryptographic
schemes are beneficial for achieving longer-term security, and their security strength
depends on solving prime factorization and discrete logarithm problems. In number
theory, integer factorization decomposes a composite number into a product of a smaller
integer. The process is prime factorization if the roots are restricted to prime numbers.
A composite number is a positive integer formed by multiplying two smaller positive
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integers. In other words, it is a positive integer that has at least one divisor other
than 1 and itself. Every positive integer is composite, prime, or unit, so the composite
numbers are precisely those that are not prime and not a unit. For instance, integer 14
is a composite number because it is a product of the two smaller integers (i.e., 2 ×
7). In contrast, the integers 2, 3, 5, and 7 are not composite numbers because they
can divide only by 1 and themselves. Now, let us consider the following example to
comprehend prime factorization. Take a prime P and let P be equal to 3240, and
assume we need to find all prime roots/factors. The simplest way to do this is by finding
the least common multiples (LCM), as factored in high school classes, and presented
in Fig. 1 (left). The multiplication of the identified roots ensures the correctness of
getting the original prime back. Note that the LCM method is effective only when the
prime numbers are relatively small but for large primes, creating a tree diagram – as
illustrated right side in Fig. 1 – is more beneficial.

Figure 1: Methods for calculating prime factorization.

For discrete logarithms, we need to fix a prime P . Let a, b be nonzero integers
(mod P ). The problem of finding x such that ax ≡ b (mod P ) is called the discrete
logarithm problem. Assume that n is the smallest integer such that an ≡ (mod P ).
By assuming 0 ≤ x < n, we denote x = La(b) and call it the discrete logarithm of b
with respect to a (mod P ). For example, let the prime P = 11, a= 2 and b= 9, then
x= L2(9) = 6.

Some open-source tools in the literature exist for factoring large primes and com-
puting discrete logarithms. For example, an open-source CADO-NFS tool for integer
factorization is available in [7], and it incorporates C/C++ implementations of the
Number Field Sieve (NFS) algorithm [8] for factoring integers and computing discrete
logarithms in finite fields. It is important to mention that not every integer is a prime,
but for sufficiently large prime P , the literature demonstrates that the prime factorization
and discrete logarithm problems are hard to solve on traditional computers and even on
the fastest supercomputers because no efficient classical or non-quantum factorization
algorithm is known.

The recent development in super-fast quantum computers [9, 10] raises issues in
security and privacy. A quantum algorithm, named Shor’s [11], provides a way to solve
prime factorization and discrete logarithm problems exponentially faster than classical
algorithms, making current PKC standards – Rivest, Shamir, and Adleman (RSA)
[12] and elliptic curve cryptography (ECC) [13] – vulnerable to attacks by quantum
computers. Therefore, two emerging directions such as quantum cryptography (QC)
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and post-quantum cryptography (PQC) found in the literature to tackle these security
concerns.

QC uses quantum mechanical properties to perform cryptographic tasks. At a very
high level, the quantum cryptography model with the case of Alice, Bob, and Eve,
is shown in Fig. 2. Alice and Bob want to send a secret to each other. Moreover,
Alice sends Bob a series of polarized photons over a quantum channel (could be fiber
optic cable), as shown in Fig. 2. If an eavesdropper, Eve, tries to listen in on the
conversation, she must read each photon to read the secret. Then she must pass that
photon on to Bob. By reading the photon, Eve alters the photon’s quantum state,
which introduces errors in the quantum key. This alerts Alice and Bob that someone
is listening and the key has been compromised, so they discard it. Alice has to send
Bob a new key that is not compromised, and then Bob can use that key to read the
secret. The main advantage of quantum cryptography is that it allows the completion
of many cryptographic tasks that are proven or presumed impossible using non-quantum
communication. For instance, the data encoded by a quantum state is impossible to
copy and modify. If someone tries to read the encoded data, the quantum state will be
changed due to wave function collapse (no-cloning theorem [14]). This helps to detect
eavesdropping in quantum key distribution.

Figure 2: Quantum cryptography model with the case of Alice, Bob, and Eve.

On the other hand, PQC uses mathematical-based problems for constructing
quantum-resilient algorithms or protocols to protect communications against quantum-
computer attacks. Hence, the scientific community is constructing new reliable quantum-
resistant cryptographic protocols, and standardization bodies and commercial orga-
nizations are also considering PQC alternatives. For example, in January 2020, the
Chinese Association for Cryptologic Research (CACR) finished its PQC-standardization
contest and selected LAC [15] as a winner for key establishment/agreement. Another
example is an ongoing contest – initiated by the American National Institute of Stan-
dards and Technology (NIST) in 2017 – for post-quantum public-key cryptography
standards. After the third round in 2022, NIST selected CRYSTALS-Kyber [16] and
CRYSTALS-Dilithium [17] and stimulated the competition process in round four to
investigate other protocols/algorithms. Note that quantum computers are still in their
early stages of development, and only the big organizations like Google, IBM, etc.,
will have quantum computers soon; regular users wouldn’t, and it may take a couple
of years to come into the market. But some quantum computers have already been
developed. In 2019, Google claimed to have the Sycamore – a 53 quantum bit (qubit)
– quantum computer [9], which takes 200 seconds to sample one instance of a quantum
circuit. The equivalent task on a supercomputer would take approximately 10,000 years.
In 2021, IBM developed a 127 qubits processor, named Eagle [10]. According to [18],
the Eagle chip is a step towards IBM’s goal of creating a 433-qubit quantum processor
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next year, followed by one with 1,121 qubits, named Condor, by 2023. Therefore,
quantum-resistant cryptographic schemes are mandated to protect future and present
communications.

The security strength of the NIST candidates for PQC standardization relies on
several mathematical problems, including code, multivariate, isogeny, lattice, and
hash. Amongst these, the lattice-based schemes are the most promising due to their
computational efficiency, strong security assurance, and support for different applications;
so from onward, this thesis discusses only lattice-based cryptography. Indeed, lattice-
based cryptography has become a popular area of research in the last decade due to the
introduction of the Learning With Errors (LWE) [19] and Learning With Rounding (LWR)
[20] problems. The NIST selection of CRYSTALS-Kyber and CRYSTALS-Dilithium
algorithms relies on LWE-based lattice cryptography, which confirms the increasing
interest in this field. SABER [21], an LWR-based scheme, remained part of the NIST
competition until round three [22] and is investigated as a case study in this thesis.

Despite the level of security needed, the choice of the cryptographic scheme (also)
relies on the specific requirements of the application or platform, such as the available
resources and the speed of encryption and decryption required. The applications related
to the internet of things and wireless sensor nodes demand area- and power-constrained
accelerators for cryptographic computations. High-speed cryptographic computations
are always required for many applications, including wireless, telecom, cloud, data
centers, enterprise systems, and network-related devices. For these applications, 8920
and 8955 families of Intel chipsets can process 5k, and 40k RSA decryption operations
in one-second [23]. IBM 4769 hardware security module offers security services like
key exchange and signature generation/verification using ECC and RSA standards
[24]. Although these distinctive chips offer thousands of operations per second, they
might become compromised since the security of ECC and RSA can be broken using
Shor’s algorithm [11] on a quantum computer. Hence, high-speed quantum-resistant
cryptographic hardware accelerators are mandated to supersede ECC- and RSA-based
devices.

The most commonly used platforms for implementing hardware accelerators are field
programmable gate array (FPGA) and application-specific integrated circuit (ASIC).
FPGAs are programmable hardware devices that can be configured and reconfigured
to perform various tasks, including PQC algorithm acceleration. It offers several
advantages: flexibility, reusability, and low development cost, and it can also be used
to accelerate multiple PQC algorithms, making them a versatile choice. ASIC, on
the other hand, are custom-built integrated circuits that are optimized for specific
tasks or applications and offer higher performance and power efficiency than FPGA.
However, ASICs are expensive to design and manufacture and are not reconfigurable.
The choice between FPGA and ASIC for implementing PQC hardware accelerators will
depend on factors such as the specific PQC algorithm(s) being accelerated, the required
performance, and the available resources and budget. Keeping these factors in mind,
some existing FPGA and ASIC hardware accelerators of quantum-resistant protocols
(such as CRYSTALS-Kyber, CRYSTALS-Dilithium, and SABER) are implemented in
[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. These implementations only provide
the hardware demonstrations without the design optimizations for specific to certain
parameters (such as low area, low power, high speed, etc.), hence posing a question:
how to further maximize the performance of PQC algorithms when demonstrated as
hardware accelerators?. This is the problem that this thesis explores.
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Figure 3: Structure of the thesis.

1.1 Novelty, Contributions & Summary of the Thesis
The thesis focuses on lattice-based PQC schemes and their performance improvement
on the ASIC platform. Fig. 3 presents the overall structure of the thesis. Each chapter
is a novel contribution to this thesis, and the corresponding details are as follows.

■ Chapter 2 This chapter gives a comprehensive overview of the concepts related to
lattice-based PQC. Also, this chapter analyzes the building blocks of several lattice-
based post-quantum algorithms, estimates their area and power on the ASIC
platform, and concludes by selecting SABER [21] as the algorithm for hardware
demonstrations and optimizations. Moreover, this chapter also describes the
mathematical background for understanding the SABER algorithm and provides
implementation platforms trade-off.

■ Chapter 3 The design of cryptographic hardware accelerators depends on poly-
nomial arithmetic (addition, multiplication, inversion, sampling, hash, etc.) and
logical operations in their datapath. However, polynomial multiplication is a
computationally expensive operation in cryptographic schemes. Mostly the imple-
mentations of polynomial multipliers are specific to operands length and are not
open-source for free use to everyone. Therefore, for the first time, I developed
an open-source generator/tool for multiplying large integer polynomials to be
used in conventional PKC algorithms (such as RSA and ECC) and PQC schemes.
This chapter describes the structure/architecture of the developed multiplier
generator tool. It offers flexibility, digitizing, pipelining, and also generates scripts
for different ASIC synthesis tools, such as Cadence Genus and Design Compiler
(DC) by Synopsis. Different figure-of-merits in Power-Area-Performance (PAP)
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are defined to evaluate different polynomial multiplication architectures generated
by the developed multiplier generator.

■ Chapter 4 The focus of this chapter is to provide a design space exploration (DSE)
process of SABER for optimizing circuit frequency specific to the ASIC platform.
The DSE process is initiated by setting a baseline architecture of SABER. Then,
several memory types are utilized to evaluate the circuit frequency. Pipelining is
incorporated to reduce the critical path of the SABER design. Parallel architectures
are also proposed and implemented to reduce the clock cycle requirements for
cryptographic computations, eventually improving the performance.

■ Chapter 5 In this chapter, a high-speed SABER chip is designed and fabricated
on a 65nm process technology. It is important to mention that designing a Printed
Circuit Board (PCB) is trivial for verification purposes. Therefore, I mount the
fabricated chip on a PCB and interface it with a microcontroller, which helps to
provide/collect inputs/outputs to/from the chip. All these details are described
in this chapter. The fabricated chip is the fastest silicon demonstrated amongst
state-of-the-art SABER chips regarding operating frequency.

■ Chapter 6 This chapter concludes the thesis. It provides future directions which
indicate that the techniques studied in this thesis can be applied to other PQC
algorithms, including CRYSTALS-Kyber and CRYSTALS-Dilithium, to improve
their computation speed.
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2 Background

This chapter describes the concepts related to lattice problems and the building blocks
(i.e., multipliers, hash, samplers, etc.) needed for constructing lattice-based PQC
algorithms in Sections 2.1 and 2.2, respectively. The SABER PQC protocol is described
in Section 2.3. The existing hardware accelerators of lattice-based PQC algorithms are
described in Section 2.4.

2.1 Lattice-Based Post-Quantum Cryptography
This section describes an overview of the hard problems defined over lattices. Such
problems are a class of optimization problems and their conjectured intractability is
the foundation of lattice-based public-key cryptography schemes [37]. Lattice problems
have been studied for centuries and are considered hard to be solved. In 1996, Ajtai
proposed the first significant public-key scheme using lattices in [38], which offered
provable security, resistance to quantum computers, and worst-case hardness. Before
defining the lattice problems, it is essential to define the elements (lattice, vector, and
basis) on which the lattice problems depend.

• Lattice. A lattice L ∈ Rm is a set of points in m-dimensional space with a
periodic structure. An example of a two-dimensional lattice is shown in Fig. 4,
where each box (filled with a black color) specifies the lattice point.

Figure 4: An example of a two-dimensional lattice over a set of all real numbers.

• Vector. A vector represents a quantity with magnitude (distance) and direction.
Vectors can have different dimensions, however, the most intuitive is in two-
dimensional or three-dimensional space. Below, Eq. 1 and Eq. 2 show the
two-dimensional and three-dimensional vectors with their coordinates/elements.

v⃗1 = (2,1) & v⃗2 = (2,8) ∈ R2 (1)

v⃗1 = (2,1,4) & v⃗2 = (2,8,5) ∈ R3 (2)
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• Basis. A basis is a collection of vectors to produce a point in a given space.

Definition 2.1.1. Lattice [39]. Let v be a set of n linearly independent vectors
v0,v1, . . . ,vn−1 ∈ Rm. The lattice L is the set of linear combinations of the vectors
with coefficients in Z, as shown in Eq. 3.

L = {a0.v0,+ · · ·+an−1.vn−1} =
n−1∑
i=0

ai.vi ∈ Z (3)

In Eq. 3, v is a basis of L, n specifies its rank and m determines its dimension. The
lattice is a full-rank if n=m. Fig. 5 presents an example of a two-dimensional lattice
with a basis of vectors v1 and v2. Any point in the lattice can be reached by an integer
combination of vectors v1 and v2.

Figure 5: A two-dimensional lattice with two basis vectors v1 and v2. The coordinates of v1
and v2 are (-1, 2) and (-1, 1), respectively.

Lattice approximate problems. The shortest vector problem (SVP) and close
vector problem (CVP) are two of the most important lattice approximate problems that
play a significant role in the security of lattice-based cryptography [37]. These problems
are presumed to be difficult to solve, which makes lattice-based cryptography secure.
Therefore, the formal construction of SVP and CVP problems is described below.

Definition 2.1.2. SVP [40]. The SVP is finding the shortest non-zero vector in a
lattice L, which is defined by n linearly independent and randomly chosen basis vectors.
In other words, find a non-zero vector v in a lattice L such that ∥ v ∥= λ1(L), where
∥ v ∥ is the Euclidean norm of the length of a vector v in L, λ1 is the shortest vector.

It shows in [38] that the SVP with Euclidean norm is NP-hard for randomized
reductions. The SVPγ is an γ-approximation version of the SVP where one has to find
a vector vγ in L such that ∥ vγ ∥≤ γλ1(L).

Definition 2.1.3. CVP [39]. Given a target vector t ∈ Rm that is not necessarily
in L, find a vector v ∈ L that is closest to t. In other words, finding a vector v ∈ L
reduces the Euclidean norm ∥ t−v ∥.

17



Like SVPγ , CVPγ is an γ-approximation of the CVP where one has to find a vector
vγ such that ∥ t− vγ ∥ ≤ ∥ t− v ∥. Note that the CVPγ is the generalization of the
SVPγ . Thus, CVP is also known to be NP-hard [38].

The SVP or CVP or their approximate versions (SVPγ and CVPγ) can be solved
easily when a basis in a lattice consists of either orthogonal or near orthogonal vectors,
also when short vectors are known. A set of orthogonal vectors describes a good basis.
Let us do examples to see the effect of bad and good basis in lattice-based cryptography.
The following examples are taken from [41]. Given a basis Bbad = {(6 14),(3 8)}
consisting of two vectors v1 and v2 with coordinates (6 14) and (3 8). Notice that
v1 and v2 are not orthogonal to each other. Also, a target vector t = (11.6 4.2) is
given. Then the approximation problem asks for the nearest point of a given lattice to
challenge the target point. The left portion in Fig. 6 describes the whole scenario, where
a system of the equations for the given basis and target t must be solved to find the
values of a and b. As seen in Fig. 6, the calculated values for a and b are real numbers
(i.e., 13.4 and -22.9); these values cannot be used to calculate the lattice point (c), so
the real values must be rounded up or down to get the integers (the closest value of
13.4 is 13 and -22.9 is -23) – this is the lattice approximation. After that, the values of
a and b need to be used in the identical system of equations to calculate the lattice
point. As shown green vector in Fig. 6, the calculated lattice point is (9 -2) and is far
from the red vector, which is a target point t= (11.6 4.2). The graphical visualization
of the complete scenario is illustrated in the right part of Fig. 6, where the orange circle
highlights that the target and calculated points are far from each other.

Figure 6: Example of a bad basis where the orange circle focuses on the target and calculated
points far from each other. The purple portion solves the lattices for CVP.

Similarly, let us consider a basis Bgood = {(3 0),(0 2)} consisting of two vectors v1
and v2 with coordinates (3 0) and (0 2). Here, notice that the v1 and v2 are orthogonal.
The same target vector t= (11.6 4.2) is considered. The approximation problem asks
for the closest point of a given lattice to challenge the target point. The left portion in
Fig. 7 describes the whole scenario, where a system of equations for the given basis and
target t must be solved to find the values of a and b. As seen in Fig. 7, the calculated
values for a and b are real numbers (i.e., 3.86 and 2.1); these values cannot be used to
calculate the lattice point c, so the real values must be rounded up or down to get the
integers (the closest value of 3.86 is 4 and 2.1 is 2) – this is the lattice approximation.
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After that, the values of a and b need to be used in the identical system of equations to
calculate the lattice point. As shown by the green vector in Fig. 7, the calculated lattice
point is (12 4) and is closest to the given target point t= (11.6 4.2). The graphical
visualization of the complete scenario is illustrated in the right part of Fig. 7, where the
orange circle highlights that the target and calculated points are closer to each other.

Figure 7: Example of a good basis where the orange circle focuses on the target and calculated
points closer to each other. The purple portion solves the lattices for CVP.

Consequently, lattice reduction algorithms in the literature aim to build a good basis
from any given basis for a lattice. For example, the LLL algorithm [42] outputs an
LLL-reduced basis in a polynomial time but with the approximation factor of Wn, where
W is a small constant. Hence, the LLL algorithm is effective in scenarios where the
dimension n of the lattice is very small. The algorithms that achieve close approximation
can run in approximation time. Examples of such algorithms are AKS [43], and BKZ
[44]. The inability of the lattice reduction algorithms to find a good basis in polynomial
time is used as the construction for lattice-based cryptography schemes.

LWE Problem. As reported earlier in this section, Ajtai described the first lattice-
based public-key scheme in 1990 [38]. Later, in 2005, Regev [19] introduced a new
lattice problem named LWE. Since its introduction, the LWE problem has become very
popular for constructing various schemes such as public-key encryption, key exchange,
digital signature generation/verification, and even homomorphic encryption schemes
[37]. The LWE problem can be defined by a lattice with dimension n, an integer modulus
q, and an error distribution χ over integers Z. A secret vector s of dimension n is
generated by choosing its coefficients uniformly in an n-dimensional ring Zn

q . Generate
random vectors ai by uniformly and error terms ei from the error distribution χ. After
that compute bi = ⟨ai,s⟩+ei ∈ Zq. Then the LWE distribution is denoted as As,χ over
Zn

q ×Zq and is the set of tuples (ai, bi). The lower bold characters show the vectors of
dimension n. The decision and search are the two variants of LWE, defined below.

Definition 2.1.4. decision LWE problem [45]. Solving the decision LWE problem
is to distinguish with non-negligible advantage between the samples drawn from LWE
distribution As,χ and the same number of samples drawn uniformly from Zn

q ×Zq.
Definition 2.1.5. search LWE problem [45]. Find a secret s when a polynomial

number of samples from the LWE distribution As,χ is given.
Note that the cryptosystems constructed on the security hardness of the original LWE
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problem are slow because they need computations on larger matrices with coefficients
from Zq. Hence, in literature, another computationally efficient variant of the LWE
problem is defined over polynomial rings, called the ring-LWE problem [46].

Lyubashevsky, Peikert, and Regev initially introduced the ring-LWE problem [47].
Ring-LWE uses a particular class of lattices named “ideal lattices” to attain computational
efficiency and reduce the key size. Therefore, the ring LWE problem is defined over a
polynomial ring Rq = Zq[x]/⟨f⟩, where ⟨f⟩ is an irreducible polynomial of degree n
and coefficients of ⟨f⟩ contain modulus q. The problem is defined as follows: Sample
a secret polynomial s(x), and error polynomials ei(x) ∈Rq with coefficients from χ.
Next, generate polynomials ai(x) with coefficients chosen uniformly from Zq. Compute
bi(x) = ai(x).s(x) + ei(x) ∈ Rq. The ring-LWE distribution is the set of polynomial
tuples (ai(x), bi(x)). As mentioned, ei specifies the error polynomials with coefficients
sampled from an n-dimensional error distribution χ. It is essential to highlight that
the error distribution is a discrete Gaussian distribution except for some cases, e.g.,
for 2k-power cyclotomics, where the error distribution is the product of n independent
discrete Gaussians. Note that, in general, χ is more complicated to compute. One can
form s by sampling the coefficients from χ rather than uniformly without any security
implications [47].

Definition 2.1.6. decision ring-LWE problem [47]. Distinguish between the samples
(ai(x), bi(x)) drawn from the ring-LWE distribution and the same number of samples
generated by choosing the coefficients uniformly.

Definition 2.1.7. search ring-LWE problem [47]. Find a secret polynomial s(x)
given a polynomial number of samples constructed from the ring-LWE distribution.

Instead of the ring-LWE, another variant of LWE schemes is module-LWE. In contrast,
ring-LWE uses polynomial ring elements, whereas module-LWR employs matrices of ring
elements to define the problem. As summarized, there exist two cases. In the first case,
when f specifies a cyclotomic polynomial [47], then the difficulty of the search ring-LWE
problem is roughly equivalent to finding a short vector in an ideal lattice (composed
of polynomials from R). A cyclotomic polynomial is a unique irreducible polynomial.
In the second case, for the LWE problem, the security strength is related to solving
the NP-hard SV Pγ over general lattices. These two cases are presumed to be equally
difficult because no proof is known (to date) to show equivalence between the SV Pγ

for general and ideal lattices. The computational efficiency using the ring-LWE problem
is obtained at the cost of the above security assumption. The cryptographic schemes
constructed on the ring-LWE problem are fast due to simple polynomial arithmetic [46].

LWR Problem. LWR is a variant of the LWE problem where random errors are
replaced with deterministic rounding. Initially, the LWR problem was introduced in
[48], and later, it was revisited in [49]. The LWR problem concerns the cryptographic
properties of the function fs : Zn

q → Zp, given by fs(x) = ⌊⟨x,s⟩⌉p = ⌊(P/q).⟨x,s⟩⌉.
Here, s ∈ Zn

q and is a secret key. The term ⟨x,s⟩ determines the inner product of x
and s mod q. The ⌊.⌉ denotes the closest integer. For mathematical derivations and
more details, readers are referred to [38, 19] for the LWE problem and [48, 49, 50] for
the LWR problem.

2.2 Building-Blocks for Lattice-Based Crypto Systems
This section deals with the building blocks of lattice-based PQC algorithms submitted
to NIST for standardization. Currently, the NIST standardization process is in round
four. I have started investigating the lattice-based PQC candidates submitted to NIST
for standardization in 2020. At that time, the NIST competition was in round two. All
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Table 1: Multiplication and hash methods for different PQC algorithms. These methods are
obtained from their reference implementations, available at NIST sites [61] (after round-2)
and [22] (after round-3).

PQC Algorithms Multiplication Methods Hash Methods

qTesla [51] NTT and SBM SHAKE-256 and cSHAKE-128/256
CRYSTALS-Dilithium [17] NTT SHAKE-128/256
NTRU-Prime [52] SBM SHA2-512
NewHope [53] NTT SHAKE-128/256
ThreeBears [54] Karatsuba cSHAKE-256
LAC [55] SBM –
Round5 [56] SBM cSHAKE-256 and AES-256
CRYSTALS-Kyber [16] NTT SHA3-256/512 and SHAKE-128/256
NTRU [57] Karatsuba and Toom-Cook SHA3-256
FrodoKEM [58] SBM SHAKE-128/256
Falcon [59] SBM SHAKE-256
SABER [21] Karatsuba and Toom-Cook SHAKE-128, SHA3-256/512

Note that the multiplication and hash methods in columns two and three have been considered
from the reference C/C++ codes of PQC algorithms that were submitted to NIST for evaluation.

the lattice-based PQC algorithms that participated in the second and third rounds of the
NIST contest are qTesla [51], CRYSTALS-Dilithium [17], NTRU-Prime [52], NewHope
[53], ThreeBears [54], LAC [55], Round5 [56], CRYSTALS-Kyber [16], NTRU [57],
FrodoKEM [58], Falcon [59], and SABER [21]. These PQC algorithms require various
building blocks depending on the construction of the cryptographic protocol to perform
cryptographic tasks. However, the polynomial multiplication and hash are the most
critical operations to compute [60]. Table 1 lists different polynomial multiplication
and hash operations, and the text below provides the implementation details of these
multiplication and hash methods.

Polynomial multiplication involves multiplying two polynomials (i.e., a and b) and
obtaining a resultant polynomial (i.e., c). The degree of the resulting polynomial is
the sum of the degrees of the two input polynomials. The polynomial multipliers can
be categorized into serial and parallel designs. In the case of bit-serial multipliers
such as schoolbook (SBM) and Booth multipliers, the multiplication of polynomials
is performed bit-by-bit, resulting in a sequence of partial products. These partial
products are then added together to obtain the resultant polynomial. On the other
hand, bit-parallel multipliers split the input polynomials into multiple parts and perform
the multiplication of these parts in parallel. The inner product of the split portions is
computed, and the resulting polynomial is generated using addition and subtraction
operations. The 2-way Karatsuba multiplier is a famous bit-parallel multiplier that
splits the input polynomials into two equal parts and uses three multiplications along
with some additions and subtractions to compute the inner product. The 3-way and
4-way Toom-Cook multipliers split the input polynomials into three and four equal parts,
respectively, and use a more complex algorithm to compute the inner product. Overall,
bit-parallel multipliers are faster and more efficient than bit-serial multipliers, especially
for larger input sizes. However, they also require more hardware resources and may not
be practical for small input sizes.

SBM multiplier. SBM is the simplest way to multiply two input polynomials
a(x)×b(x), as shown in Eq. 4. The resultant polynomial c(x) is generated by performing
bit-by-bit operations. Algorithm 1 shows the number of steps required to perform
polynomial multiplication for the SBM multiplier, where polynomial a is multiplied with
the shifted polynomial b to produce the resultant polynomial c. The latency associated
with an SBM multiplier is ⌈m⌉ clock cycles, whereas the operations to be computed
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are (m−1) additions and m multiplications (shifts).

c(x) =
m−1∑
i=0

m−1∑
j=0

aibjx
i+j (4)

Algorithm 1: Traditional SBM multiplication
Input: a and b (m− bit polynomial integers)
Output: c← a× b

1 for (j from 0 to m−1) do
2 if bj = 1 then
3 c← c + (a×2j)

4 return c

Booth multiplier. Similar to the SBM, the traditional Booth multiplier exploits
add, subtract, and shift operations. Yet, unlike the SBM, it does not look at a bit
at a time [62]. It observes two bits at a time and reduces the required addition and
subtraction operations, ultimately reducing the multiplier’s latency. The traditional
Booth multiplication method is presented in Algorithm 2, where A keeps the generated
partial product (initialized with 0). The b shows the extended polynomial with the
addition of a dummy 0-bit next to the least significant bit of the multiplier (b). It
computes multiplication by inspecting the least significant two bits of the multiplier
to match these four cases: 00, 01, 10, and 11. When the inspected bits are either
00 or 11, it means to do nothing or remain unchanged. For the remaining two cases,
the multiplicand may be added (line 5) or subtracted (line 8) from the partial product
(A). The shift_right_add function of lines 6 and 9 in Algorithm 2 determines the
multiplication of multiplicand by 2 with shift and add operations. For two operands of
length m, Algorithm 2 takes m/2 clock cycles. Follow [62] for additional details.

Algorithm 2: Booth Multiplication
Input: a and b (m− bit polynomial integers)
Output: c← a× b

1 A← 0 (m− bit temporary integer)
2 b←{b,0}
3 for (j from 0 to m−1) do
4 if bj+1×bj = 01 then
5 A←A + a

6 c← shift_right_add(A,bj+1,bj)
7 if bj+1×bj = 10 then
8 A←A−a

9 c← shift_right_add(A,bj+1,bj)

10 return c

Karatsuba multiplier. A generalized Karatsuba multiplier contains l number of
levels to perform polynomial multiplication, where l depends on the user or designer
to choose. For example, let us assume we have two input polynomials, z1 and z2. At
the first level, z1 and z2 are divided into two smaller polynomials, z1

2 and z2
2 . At the
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second level, each split polynomial is further divided into two other polynomials, i.e., z1
4

and z2
4 . The process of splitting polynomial repeats until the value l is reached. After

splitting the input polynomials, the inner product can be computed, which is achieved
using three inner multiplications, a few additions, and shift operations on small(er)
operands. Eventually, the resulting polynomial is generated with the multiplications
starting from the smaller polynomials to the larger one in a reverse order (meaning
multiplications start from z1

4 and z2
4 to z1 and z2).

From Eq. 4, the split polynomial is derived in Eq. 5 where n shows the polynomial
splits and k determines the index of the split polynomial. For a specific 2-way Karatsuba
multiplier1, the expanded version of Eq. 5 is shown in Eq. 6. It requires four multiplica-
tions for the execution of inner products (one to achieve the resulting polynomial c1(x),
two multiplications for the execution of c2(x), and eventually one for the execution of
c0(x)). As presented in Eq. 7, the Karatsuba observation was to compute c2(x) with
only one multiplication instead of two. The addition of inner products is required to
generate the resultant polynomial c(x), as presented in Eq. 8. Algorithm 3 provides
the number of steps for the 2-way Karatsuba polynomial multiplication method. As
the name implies, function add_shift in line 8 of Algorithm 3 applies the shift and add
operations over the polynomials given in parentheses. In total, ⌈m

2 ⌉ clock cycles are
needed to implement one m-bit polynomial multiplication.

c(x) =

 m−1∑
i= k×m

n

ak(x)+ . . .+

k×m
n −1∑
i=0

a0(x)


︸ ︷︷ ︸

splitpolynomiala(x)

×

 m−1∑
i= k×m

n

bk(x)+ . . .+

k×m
n −1∑
i=0

b0(x)


︸ ︷︷ ︸

splitpolynomialb(x)

(5)

c(x) = a1(x)b1(x)︸ ︷︷ ︸
c1(x)

+a1(x)b0(x)+a0(x)b1(x)︸ ︷︷ ︸
c2(x)

+a0(x)b0(x)︸ ︷︷ ︸
c0(x)

(6)

c2(x) = (a1(x)+a0(x))× (b1(x)+ b0(x))− c1(x)− c0(x) (7)

c(x) = c0(x)+ c1(x)+ c2(x) (8)

Algorithm 3: 2-way Karatsuba Multiplication
Input: a and b (m− bit polynomial integers)
Output: c← a× b

1 [b1, b0,a1,a0]← [a,b]
2

2 c0← a0× b1
3 c1← a1× b1
4 c01← a1 + a0
5 c10← b1 + b0
6 c2← c10× c01− c1− c0
7 for (j from 0 to m−1

2 ) do
8 c← c0 + add_shift(c1, c2)
9 return c

Toom-Cook multiplier. The Toom-Cook multiplication method is the advanced
and extended form of Karatsuba multiplication. The difference is in dividing input

12-way Karatsuba means that the splitting of input polynomials for Karatsuba multiplication
is applied only once.
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polynomials into 3 and 4 parts instead of 2 (as in 2-way Karatsuba). With index k of the
split input polynomials, the values for n= 3 and n= 4 in Eq. 5 determine the equations
of 3-way and 4-way Toom-Cook multipliers. The expanded version of Eq. 5 produces
nine and sixteen inner multiplications for 3-way and 4-way Toom-Cook multipliers,
respectively. Using a process identical to the 2-way Karatsuba, the required nine and
sixteen inner multiplications can be reduced to five and seven. The equations for variants
of the Toom-Cook multiplier are not shown as it requires an identical procedure to
the 2-way Karatsuba. However, Algorithm 4 presents a complete understanding of the
Took-Coom multiplication method when the split input polynomials are three smaller
polynomials. As the name implies, function add_shift in line 8 of Algorithm 4 applies
the shift and add operations over the polynomials given in parentheses. In total, ⌈m

3 ⌉
and ⌈m

4 ⌉ clock cycles are required to execute one m-bit polynomial multiplication.

Algorithm 4: 3-way Toom-Cook Multiplier
Input: a and b (m− bit polynomial integers)
Output: c← a× b

1 [b2, b1, b0,a2,a1,a0]← [a,b]
3

2 c0← a0× b0
3 c1← a0× b1 + a1× b0
4 c2← a0× b2 + a1× b1 + a2× b0
5 c3← a1× b2 + a2× b1
6 c4← a2× b2
7 for (j from 0 to m−1

3 ) do
8 c← c0 + add_shift(c1, c2, c3, c4)
9 return c

Multipliers based on Number Theoretic Transformation (NTT). The NTT-
based polynomial multiplication is an efficient way to multiply two polynomials over ring
Zq[X]/⟨Xn +1⟩, where Zq[X]/⟨Xn +1⟩ represent the polynomial ring reduced with
cyclotomic polynomial (Xn +1) over Zq[X]. It is a generalization of the Fast Fourier
Transform (FFT). Let we have a polynomial f with degree n, where f =

∑n−1
i=0 fiX

i

and fi ∈ Zq and ωn be the n-th primitive root of unity such that ωn
n = 1 mod q.

Then the forward NTT can be defined by f̂ =NTT (f), such that f̂i =
∑n−1

j=0 fjω
ij
n

mod q. Similarly, the inverse NTT can be computed by f = INTT (f̂), such that
fi = n−1∑n−1

j=0 f̂jω
−ij
n mod q. Based on these definitions, an NTT-based polynomial

multiplication between a and b can be performed such that a.b = INTT (NTT (a) ◦
NTT (b)).

The NTT-based multiplication computes on convolution, which transforms the input
polynomials of length n to 2n with zeros padding, resulting in more computation time.
Therefore, to avoid applying the NTT of length 2n with n zero padding of inputs, a
negative wrapped convolution (NWC) [63] method is introduced at the cost of pre-
processing of NTT and post-processing of INTT. Let us say ψ = √

ωn; it is a primitive
2n-th root of unity. The pre-processing cost includes the multiplication between the
coefficients of the input polynomials and ψi. In contrast, the post-processing cost
includes the multiplication between the coefficients of the output polynomials and ψ−i.

The CooleyTukey (CT) and Gentleman-Sande (GS) butterfly configurations are the
most frequently employed in literature on NTT-based implementations. Using these
configurations reduces the bit-reverse operation in NTT, which is the bit-wise reversal
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of the binary representation of the coefficient index. For more insight details at the
algorithmic level, interested readers are referred to [64], and to follow some recent
NTT-based hardware accelerators, readers are referred to [65, 66, 67].

The last column of Table 1 shows the hash methods implemented in different PQC
algorithms for various purposes, such as binomial sampling. The PQC schemes of
column one of Table 1 contributed in rounds two and three of the NIST competition
process and mainly depended on variants of the SHA2, SHA3, and SHAKE-128/256
hash functions. This thesis is not describing the inner structures of these hash functions;
however, the only objective is to highlight the complexity of the PQC schemes when
realized as hardware accelerators. NIST standardizes the most recent SHA3 and its
variants in [68] and is mainly used in all PQC schemes of Table 1, including the NIST
selected CRYSTALS-Kyber and CRYSTALS-Dilithium algorithms to be standardized in
the near future.

Also, the computation time of polynomial multiplications and hash operations of
the PQC algorithms depends on their security parameters. NIST has defined five
security levels (1 to 5) for investigating PQC algorithms. Security levels 1, 3, and 5 are
equivalent to AES-128, AES-192, and AES-256 bit key search. The remaining security
levels (2 and 4) are equivalent to SHA-256/SHA3-256 and SHA-384/SHA3-384 bit
collision search. Implementing all security levels in one hardware design requires large
memory utilization. In other words, despite the polynomial multiplications and hash
operations, large memory utilization is also the key characteristic of the PQC algorithms
when demonstrated as hardware accelerators. Therefore, in [69], I have evaluated the
memory, hash, and multiplier building blocks of PQC algorithms of Table 1, where I
have targeted the highest security parameters shown in Fig. 8. The detailed outcomes
appear in [69] while the major findings are repeated in Fig. 9.

Figure 8: Selected lattice-based PQC algorithms and the corresponding implementations utilized
in this study. Red-colored text inside the parenthesis specifies selected security parameters.

To evaluate the area and power results in Fig. 9, I have added the area and power of
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Figure 9: Total area and power of the studied NIST lattice-based PQC algorithms on 65nm
process technology.

memory, multiplier, and hash operations together. The area for memory is investigated
in terms of read-only (ROM) and read-access (RAM) memories. The instances of the
required ROM and RAMs are generated using a commercial memory compiler from a
partner foundry. For the corresponding PQC algorithm of Table 1, I have implemented
Algorithms 1 to 4 for polynomials multiplication. The hash algorithms of column three of
Table 1 are also implemented. For details about polynomials’ input and output lengths,
required memory sizes for ROM and RAM, and input and output of hash functions,
readers can follow [69]. Consequently, the CRYSTALS-Kyber algorithm utilizes lower
resources and consumes less power than other NIST round three candidates. On
the other hand, the CRYSTALS-Dilithium takes higher resources but consumes lower
power than the SABER algorithm, as shown in Fig. 9. Therefore, due to its simple
mathematical structure, I selected SABER for further investigations in this thesis. Hence,
the following text overviews SABER, including its building blocks.

2.3 SABER PQC KEM Protocol
SABER [21] provides security against Chosen-Ciphertext Attacks (IND-CCA), and its
security hardness depends upon solving the module variant of the LWR problem (mod-
LWR) [48]. A mod-LWR sample is defined by (a,b= ⌊p

q (aT s)⌉) ∈ Rl×1 × Rp. Here,
a denotes a vector of randomly generated polynomials in Rq, s determines a secret
vector of polynomials in Rq whose polynomial coefficients are sampled from a binomial
distribution, and the modulus p is less than q. The decisional variant of the problem
is about finding a way to distinguish between two types of samples (mod-LWR and
uniformly random) in Rl×1

q ×Rp. Moreover, SABER uses the Mod-LWR problem with
p and q being power-of-two to construct a public-key encryption (PKE) scheme that is
secure against Chosen Plaintext Attacks (IND-CPA). The PKE scheme supports the
following cryptographic operations: (i) generation of a pair of public and private keys
(PKE.KEYGEN), (ii) encryption (PKE.ENC), and (iii) decryption (PKE.DEC). The
related algorithms to execute these operations are described in algorithms 5, 6, and 7.
Similarly, for the KEM operations, the following are supported: (i) generation of a pair
of public and private keys (KEM.KEYGEN), (ii) encapsulation (KEM.ENCAPS), and
(iii) decapsulation (KEM.DECAPS). The algorithms for these operations are described
in algorithms 8, 9, and 10.
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Algorithm 5: SABER.PKE.KEYGEN() [30]
Input: SABER Parameter Lengths
Output: pk⇐ (seedA, b),sk⇐ (s)

1 seedA⇐U({0,1}256)
2 A⇐ gen(seedA) ∈Rl×l

q

3 r⇐U({0,1}256)
4 s⇐ βµ(Rl×l

q ; r)
5 b⇐ ((AT s + h) mod q)≫ (ϵq− ϵp) ∈Rl×l

p

6 return pk⇐ (seedA, b),sk⇐ (s)

Algorithm 6: SABER.PKE.ENC() [30]
Input: pk⇐ (seedA, b),m ∈R2; r)
Output: c⇐ (cm, b′)

1 A⇐ gen(seedA) ∈Rl×l
q

2 if r is not specified then
3 r⇐U({0,1}256)

4 s′⇐ βµ(Rl×l
q ; r)

5 b′⇐ ((As′ + h) mod q)≫ (ϵq− ϵp) ∈Rl×1
p

6 v′⇐ bT (s′ mod p) ∈Rp

7 cm⇐ (v′ + h1−2ϵp−1m mod p)≫ (ϵp− ϵT ) ∈RT

8 return c⇐ (cm, b′)

Algorithm 7: SABER.PKE.DEC() [30]
Input: sk⇐ s,c⇐ (cm, b′)
Output: m′

1 v⇐ b′T (s mod p) ∈Rp

2 m′⇐ ((v−2ϵp−ϵT cm + h2) mod p)≫ (ϵp−1) ∈R2
3 return c⇐ (cm, b′)

Algorithm 8: SABER.KEM.KEYGEN() [30]
Input: SABER.PKE.KEYGEN()
Output: pk⇐ (seedA, b),sk⇐ (s,z,pkh)

1 pk⇐ (seedA, b)
2 pkh⇐F(pk)
3 z⇐U({0,1}256)
4 return pk⇐ (seedA, b),sk⇐ (s,z,pkh)

Algorithm 9: SABER.KEM.ENCAPS() [30]
Input: pk⇐ (seedA, b)
Output: c,K

1 m⇐U({0,1}256)
2 (K̂,r)⇐G(F(pk),m)
3 c⇐ SABER.PKE.ENC(pk,m; r)
4 K⇐F(K̂,c)
5 return pk⇐ (seedA, b),sk⇐ (s,z,pkh)
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Algorithm 10: SABER.KEM.DECAPS() [30]
Input: sk⇐ (s,z,pkh),pk⇐ (seedA, b), c
Output: K

1 m′⇐ SABER.PKE.DEC(s,c)
2 (K̂′, r′)⇐G(pkh,m′)
3 c′⇐ SABER.PKE.ENC(pk,m′; r′)
4 if c = c′ then
5 K ⇐H(K̂′, c)
6 else
7 K⇐H(z,c)
8 return pk⇐ (seedA, b),sk⇐ (s,z,pkh)

In algorithms 5 to 10, the coefficients of the secret vectors s and s′ are sampled
from a centered binomial distribution βµ(Rl×1

q ) with a parameter µ, where µ < p. The
hash functions used in the SABER protocol are determined by F , G, and H. F and H
are implemented using SHA3-256, while G is implemented using SHA3-512. A variant
of SABER, U , samples the secret vectors s and s′ from a centered uniform distribution
instead of the binomial distribution. This makes the secret generation more efficient, as
sampling from U is simpler than sampling from βµ. The constant polynomials used in
SABER are h1 and h2. The implementation constants l, ϵq, ϵp, and ϵT have values of
3, 13, 10, and 4 for SABER. Different operations of SABER are further described in
the following points.

• PKE.KEYGEN begins by randomly generating a seed that defines an l× l matrix
A comprising l2 polynomials in Rq. A function gen of Algorithm 5 is used to
generating a matrix from the seed based on SHAKE-128. A secret vector s of
polynomials is also generated. These polynomials are sampled from a centered
binomial distribution. The generated public key contains a matrix seed and rounded
product AT s, while the secret key contains a secret vector s. KEM.KEYGEN
follows the same steps as used for the PKE.KEYGEN, except that it appends a
secret key with a hash of the public key and a randomly generated string z.

• The PKE.ENC operation consists of generating a new secret s′ and adding a
message to the inner product between the public key and the new secret s′. This
forms the first part of the ciphertext while the second part contains the rounded
product As′. The KEM.ENCAPS operation starts by randomly generating a
message m and obtaining from that the public key. The ciphertext c contains the
encrypted message and a value achieved from the message and public key.

• PKE.DEC requires the secret key s to extract the original message from the inner
product between the public and secret keys. It is the counterpart to PKE.ENC.
KEM.DECAPS re-encrypts the obtained message with the randomness associated
with it and checks whether the ciphertext corresponds to the one received.

SABER offers three variants to target different security levels: LightSABER, SABER,
and Fire SABER. The supported parameters to implement variants of SABER are given
in Table 2. The values of the implementation constants used in algorithms 5 to 10 can
be chosen from the SABER reference document [21]. Table 2 shows that, for the same
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parameter size, three variants of SABER differ only in the secret key size. Moreover,
the required building blocks are shown in Fig 10 to implement three variants of SABER.

Table 2: Security parameters of SABER for PKE and KEM operations (taken from [21])

SLi Public-key (B) Secret-key (B) Cipher-text (B)
Light SABER (PKE & KEM): l = 2, n= 256, q = 213, p= 210, T = 23, µ= 10

SL1 672 832 (for PKE) & 1568 (for KEM) 736
SABER (PKE & KEM): l = 3, n= 256, q = 213, p= 210, T = 24, µ= 8

SL3 992 1248 (for PKE) & 2304 (for KEM) 1088
Fire SABER (PKE & KEM): l = 4, n= 256, q = 213, p= 210, T = 26, µ= 6

SL5 1312 1664 (for PKE) & 3040 (for KEM) 1472
SLi: Security levels, SL1: equivalent to AES-128, SL3: equivalent to AES-192
SL5: equivalent to AES-256.

(a) Concerning SABER specification document [21].

(b) Regarding FPGA-based hardware design of [30].

Figure 10: SABER building blocks.

Fig. 10(a) provides the SABER building blocks concerning its specification document
of [21], where all the blocks are implemented in C/C++ and called in a main file to
execute the sequence of SABER operations. The building blocks, shown in Fig. 10(b),
are regarding FPGA-based reference SABER implementation of [30], where blocks on
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the left are the arithmetic and logical units and these blocks shares storage element
amongst them to keep intermediate and the final results after the computations.

The blocks of Fig. 10(a) and Fig. 10(b) operate identically with some additional
logic. For example, the SHA3-256/512 & SHAKE128 implemented as a wrapper to
operate variants of SHA3, GenMatrix and GenSecret blocks of Fig. 10(b). Similarly, a
polynomial multiplier is also implemented as a wrapper in Fig. 10(b), and it implements
PolyMul, MatrixVectorMul, and InnerProd blocks of Fig. 10(a). The HammingWeight
and Randombytes blocks of Fig. 10(a) correspond to the sampler and AddRound blocks
of Fig. 10(b). Moreover, the BS2POLN and POLN2BS blocks of Fig. 10(a) correspond to
Unpack and AddPack units. The additional CMOV and CopyWords blocks in Fig. 10(b)
need to compute matrix transpose by shifting rows with the columns and vice versa. In
short, the strategies to implement these building blocks are described in the text below.

SABER requires several hash functions such as variants of SHA3 (256/512) and
an extended output function, i.e., SHAKE128, for different purposes such as binomial
sampling. All these functions are standardized in FIPS-202 [68]. SHA3-256 takes the
input byte string from the byte array of length l and generates the output byte string
of length 32. Similarly, SHA3-512 takes the input byte string from the byte array of
length l and generates the output byte string of length 64. SHAKE128 receives the
input byte string from the byte array of length l and generates the output byte string
of length L. The execution of all these hash functions is based on a KECCAK sponge
function [68] to compute the permutations. The building blocks of KECCAK are theta,
pi, rho, chi, and iota. To understand KECCAK building blocks, interested readers are
referred to follow the KECCAK specification document [68].

SABER involves polynomial-to-polynomial multiplications and matrix-to-vector mul-
tiplication. In polynomial-to-polynomial multiplications, the corresponding inputs and
produced output are in polynomials. In matrix-to-vector multiplication, the first input
to the multiplier is a matrix that belongs to Rl×1

q while the second input is a vector v,
and it returns the products in a vector. Several approaches exist in the literature to
operate these (polynomial-to-polynomial and matrix-to-vector) multiplications. These
approaches include schoolbook [70, 71], Karatsuba [69, 72, 73], Toom-Cook [74, 75],
NTT [65], Booth [62], etc. Since SABER uses a power-of-two moduli p = 210 and
q= 213 [30]; therefore NTT-based multiplication could be applied but has no benefit and
even, it worse the performance of the SABER [76] – while the remaining methods can be
applied to perform polynomial coefficient multiplications. The mathematical structures
of these polynomial multiplication methods are already described in Section 2.2.

As mentioned before, SABER uses a power-of-two moduli p = 210 and q = 213

[21], therefore algorithms 1 and 2 can be applied in their present form to perform
SABER polynomial coefficient multiplication with clock cycles overhead compared
to SABER-specific SBM multipliers of [30, 34, 36]. More precisely, SABER has 256
public and secret polynomial coefficients with a length of 13 bits and 4 bits each,
respectively. Therefore, to perform multiplication over a 13-bit public polynomial
coefficient with a 4-bit secret polynomial coefficient, algorithms 1 and 2 take 4 and
2 clock cycles as these multipliers are not only specific to SABER but also feasible
for other cryptographic algorithms such as ECC. Using SBM multiplication designs of
[30, 34, 36], one polynomial coefficient can be multiplied in one clock cycle; hence
for 256 coefficients, only 256 cycles are required. In the case of other multipliers
of algorithms 3 and 4, some special considerations are needed to multiply SABER
polynomial coefficients so that readers can follow [31] (for Karatsuba implementation
specific to SABER) and [32] (for Toom-Cook implementation specific to SABER).
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The remaining building blocks are CopyWords, Constant-time Move (CMOV), Verify,
AddPack, AddRound, Unpack, and BS2POLVECp. These have a low computational
complexity of O(n) [30]. The Copy-Words block is used to copy data-block from one
location to another. In SABER, this block is only utilized during the key generation
to compute the transpose of a matrix. The Verify block is a key component of
cryptographic protocols that aim to ensure the authenticity of the computed/generated
data. In the decapsulation operation, the received ciphertext must be compared with
the re-encrypted ciphertext. If they match, the result of this comparison is stored in
a flag register, which is used by the CMOV instruction to either copy the decrypted
session key to a specified location or a pseudo-random string.

The AddPack block performs coefficient-wise addition between a constant value and
a message. This operation is used in various cryptographic algorithms to transform the
message in a controlled and predictable way. Adding a constant value transforms the
message into a new value that is less predictable to an attacker. In addition, AddPack
is also responsible for packing the result bits into a byte string; the functions for this
transformation are described in the SABER specification document [21]. The AddRound
block performs two tasks: coefficient-wise addition and coefficient-wise rounding. The
coefficient-wise addition involves adding a constant value h to each coefficient of the
input data. This helps to mix the input data and add randomness to the result. The
coefficient-wise rounding involves rounding each coefficient of the result (obtained after
addition) to the nearest integer value. This helps reduce the number of possible output
values and therefore increases the cipher’s security. Overall, the AddRound block plays
an important role in designing secure cryptographic ciphers by adding randomness and
reducing the number of possible outputs, making it harder for an attacker to predict
the output or reverse the cipher. The conversion from byte into bit strings is the
responsibility of Unpack unit; the functions for this transformation are described in the
SABER specification document [21]. A BS2POLVECp block transforms the byte strings
into polynomial vectors. For more specific details, and corresponding algorithms for
different transformations, readers can follow the SABER specification document [21].

2.4 Implementation Platforms and Hardware Accelerators
This section summarizes different implementations of SABER on various platforms,
including RISC-V processors [77], general-purpose-processors (GPUs) [78], ARM plat-
forms [79, 80, 81], software implementations with side-channel protection [82, 83], a
side-channel protected hardware implementation [84], an embedded microcontroller
[85], FPGAs [76, 30, 86] and ASICs [34, 36, 31, 32, 33]. Below I am describing these
accelerator architectures along with their limitations and advantages.

A RISC-V architecture is modified in [77] to integrate a tightly coupled hardware
accelerator for performance improvement of lattice-based PQC. The aim was to reuse the
RISC-V processor resources to reduce memory access efficiently, significantly increasing
performance and keeping low area overhead. This was achieved with three steps: (i)
initially, the authors proposed hardware accelerators (one for NewHope, CRYSTALS-
Kyber, and SABER) and integrated them into the RISC-V pipeline design, (ii) then
they extended the RISC-V Instruction Set Architecture (ISA) to include twenty-nine
additional instructions to execute operations for lattice-based cryptography efficiently,
and (iii) finally the authors implemented the extended RISC-V architecture on ASIC
and FPGA platforms. Compared to only software implementation on RISC-V, the
co-design of [77] shows a speedup of 11.4, 9.6, and 2.7 for NewHope, Crystals-Kyber,
and SABER. Compared to ASIC, the consumed energy reduces by 9.5, 7.7, and 2.1
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times for NewHope, Crystals-Kyber, and SABER.
The experiments in [78] reveal that the dot-product instruction, introduced by

NVIDIA in modern GPU architectures, can effectively accelerate matrix multiplication
and polynomial convolution operations commonly found in post-quantum lattice-based
cryptographic schemes.

NIST has recommended ARM microcontrollers as an important benchmarking
platform for its PQC standardization process, and hence several implementations
reported performance improvements [79, 80, 81]. The use of polynomial multiplication
styles (such as Toom-Cook, Karatsuba, and NTT) on embedded vector architectures is
explored in [79] where implementations were performed on Arm Cortex-M4 CPU as well
as the newer Cortex-M55 processor architectures. Through careful register management
and instruction scheduling, they show a significant performance improvement (3-5 times
faster) compared to highly optimized implementations on the Cortex-M4 architecture
while maintaining a low area and energy profile suitable for use in the embedded
market. The focus on low area and energy consumption is particularly important for
embedded systems, which often have limited resources and power constraints. The
design space of SABER on Cortex-M3 and Cortex-M4 processors is explored in [80].
Postquantum cryptography schemes’ speed and memory optimizations are crucial for
practical deployment in resource-constrained microcontrollers, specifically to ensure
secure communication in IoT-related applications. This is addressed by the authors
of [81] where they have leveraged digital signal processing instructions and efficient
memory access to optimize the polynomial multiplication operation of SABER on the
Cortex-M4 processor, which is a critical part of the scheme. Additionally, they have
employed the Karatsuba algorithm and just-in-time strategy to generate the module
lattice’s public matrix, which helps to reduce the memory footprint.

SABER is very efficient for masking because of the two specific design preferences:
(i) power-of-two moduli and (ii) limited noise sampling with LWR. Therefore, in [82],
the SABER design includes a novel primitive for masked logical shifting on arithmetic
shares, and adapts an existing masked binomial sampler to provide side-channel resistant
implementation on the ARM Cortex-M4 microcontroller. In [83], authors claimed to have
the first masked software-hardware co-design for PQC with SABER and CRYSTALS-
Kyber algorithms (as a case study) where they devise a masked ciphertext compression
protocol for non-power-of-two moduli PQC schemes. To accelerate the performance of
the linear operations such as a multiplier, they implement a generic NTT-based multiplier
suitable for schemes those not allowing the NTT operations (such as SABER). For the
required non-linear operations, they have developed masked hardware accelerators that
allow secure instructions execution using RISC-V instruction set extensions.

An efficient implementation of SABER on ESP322 microcontroller is implemented in
[85], where a big integer RSA-based co-processor is utilized for computing the polynomial
multiplications of SABER.

At register-transfer-level (RTL), a SABER hardware accelerator is designed to be a
fast co-processor for lattice-based cryptography in [30]. The co-processor is optimized
for polynomial multiplication and includes various design decisions and architectural
optimizations to reduce overall cycle counts and improve resource utilization. For key
generation, encapsulation, and decapsulation operations, the accelerator requires 5453,
6618, and 8034 cycles for a module dimension of 3 (which provides security similar to
AES-192). It runs at a maximum frequency of 250MHz on a Xilinx UltraScale+ FPGA

2ESP32 is an embedded microcontroller explicitly designed for an IoT environment with
WiFi and bluetooth support. Its manual can be accessed at [87].
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and consumes 23686 look-up-tables (LUTs), 9805 flip-flops (FFs), and 2 BRAM tiles.
An NTT-based polynomial multiplier has been shared between two quantum-resistant

cryptographic protocols, i.e., SABER and Dilithium, in [76]. The authors estimate that
this can lead to a 4% increase in LUT count for existing Dilithium implementations.
Their NTT-based multiplier has a minor trade-off of producing inexact results in
some limited inputs, but the authors conduct a thorough analysis and prove that the
probability of these events occurring is near zero and does not affect the security of the
implementation. They also implement the NTT multiplier in hardware and obtain a
design with competitive performance/area trade-offs. The implementation has a latency
of 519 cycles and consumes 2012 LUTs and 331 FFs when implemented on an Artix-7
FPGA. A shuffling-based method is (also) offered to provide side-channel protection
with low overhead during polynomial multiplication. Furthermore, the side-channel
security of the design is evaluated on a Sakura-X FPGA board. It is important to note
that only the NTT-based multiplication core is described in [76] without providing the
complete implementation of the SABER and CRYSTALS-Dilithium PQC algorithms.

Design and implementation of a domain-specific co-processor to accelerate the
performance of SABER are considered in [86] where authors run the building blocks on
an ARM core and the most computationally intensive operations are offloaded to the co-
processor, leveraging the idea of distributed computing at the micro-architectural
level and incorporating algorithmic optimizations. The results show that the co-
processor provides approximately a 6 times speedup compared to optimized software
implementation, with a small area cost. The design was demonstrated on a Zynq-7000
ARM/FPGA System-on-Chip (SoC) platform. Hence, the co-processor accelerators of
[30] and [86] demonstrate the potential for hardware acceleration of PQC algorithms
and highlight the benefits of a hardware-software co-design approach for efficient and
compact implementations.

Another co-processor PQC accelerator is presented in [88]. The authors have
implemented three lattice-based PQC algorithms (FrodoKEM, Round5, and SABER)
on an Ultrascale+ FPGA using a software/hardware codesign approach.

Using various optimization techniques such as pipelining, resource sharing, and
efficient memory arrangements, a design space exploration of SABER is presented in
[34]. These optimizations (after synthesis) resulted in a clock frequency of 1GHz.
However, when the full-optimized SABER architecture was fabricated on a 65nm process
technology, the maximum operating frequency was only 715MHz (details are described
in [36]). This decrease in operating frequency is common when transitioning from
simulation to actual physical implementation due to manufacturing process variability,
power constraints, and limitations in on-chip interconnect. Notably, the decrease
in operating frequency does not necessarily mean that the optimized architecture
is ineffective. In [36], a proof-of-concept of the optimized SABER architecture is
demonstrated, showing the adopted approach’s viability.

The Energy-efficient crypto processor architecture of [31] for SABER employs the
hierarchical Karatsuba method to optimize the processor’s energy consumption. Im-
plementing the processor on 40nm process technology reveals an area consumption
of 0.38mm2 and a maximum frequency of 400MHz. A Toom-Cook multiplier with
a striding of 4 for SABER 256-degree polynomial multiplications is also a significant
contribution to the field; this optimization approach is investigated on 65nm process
technology, and the relevant details are described in [32]. These optimizations (of the
Karatsuba and Toom-Cook) help to make the processor more efficient and practical for
real-world applications.
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It is impressive that a flexible crypto processor has been fabricated in [33] for
several hard mathematical problems using a 28nm process technology. The support
for various cryptographic algorithms such as SABER, NTRU, CRYSTALS-Dilithium,
Rainbow, CRYSTALS-Kyber, and McEliece makes the design very versatile and suitable
for a wide range of cryptographic applications. The fact that it can operate at a
maximum frequency of 500MHz while consuming low power at a 0.9V supply voltage
is also noteworthy. The large chip size of 3.6mm2 is used because it supports multiple
algorithms. These features make the design an excellent choice for implementing secure
cryptographic operations for various applications.

Most FPGA and ASIC SABER hardware accelerators execute the polynomial multi-
plications based on the sign-magnitude format. Recently, in [89], SABER multiplication
design was presented where authors emphasized two’s complement representation system
to multiply SABER polynomial coefficients.

In summary, hash and polynomial multiplications are the critical building blocks
of implementing lattice-based cryptography. In addition, large memory size is also
a requirement of the lattice-based PQC algorithms to keep the initial, intermediate,
and final results. The existing hardware accelerators are mostly obtained after the
polynomial multiplications’ optimizations. Indeed, NIST is investigating the security
aspects of PQC algorithms primarily at the software level only, and the performance of
PQC algorithms on different platforms is a crucial factor to consider. The choice of
platform for implementing PQC algorithms is not straightforward and depends on the
system’s specific requirements. For example, pure software implementations of PQC
algorithms are often more flexible and can be easily updated, but they may not provide
the same level of security as hardware implementations. On the other hand, hardware
implementations, such as those implemented on FPGAs or ASICs, can provide a higher
level of security, but they are often more expensive and may not be as flexible as software
implementations. The combined software-hardware approach provides a balance between
performance, security, and cost. It allows for the benefits of hardware-based security to
be combined with the flexibility of software implementations.
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3 A Generator of Large Integer Polynomial Multipliers

This chapter focuses on the open-source polynomial multiplier generator that I have
developed. The chapter highlights the critical features and describes the multiplier
generator architecture in sections 3.1 and 3.2, respectively. Section 3.3 provides the
implementation results in various design parameters, including area, latency, clock
frequency, and power, of the generated multipliers on ASIC and FPGA platforms. After
providing the values of these design parameters, more than one design parameters are
utilized simultaneously to define the figures-of-merit (FoM) and design trade-offs to
evaluate the performance of the multiplier generator, the subsequent details are shown
in Section 3.4. Section 3.5 compares the generated multipliers to existing multiplier
accelerators.

Indeed, cryptographic systems rely on arithmetic and logical operations for secure
communication and data exchange. Multiplication is often considered the most compu-
tationally intensive operation in cryptographic circuits, and it can become a bottleneck
for efficient implementation of cryptographic schemes [90, 91, 92, 93, 94]. This is
especially true for public-key cryptosystems like RSA and ECC [95, 61], which require
efficient polynomial multiplications. Post-quantum cryptography algorithms also require
efficient polynomial multiplications. Additionally, fully homomorphic encryption enables
multi-party communications on the cloud and requires large integer polynomial multipli-
ers [96]. Therefore, there is a need for efficient polynomial multipliers to ensure the
security and efficiency of cryptographic systems.

Multiple multiplication techniques are available in the literature for multiplying
polynomial coefficients, and each technique has its own advantages and disadvantages.
Some commonly used techniques include the traditional SBM, Karatsuba, Toom-Cook,
Montgomery, Booth, and NTT. These techniques can also be utilized in a digitized
form, where the polynomial is split into smaller parts to reduce the complexity of
the multiplication at the expense of additional control logic to drive and unite the
small products. The choice of multiplication technique depends on the application’s
specific requirements and the target hardware platform. The reference implementations
of various PQC algorithms, available in [61], suggest using different multiplication
techniques for different algorithms. For example, (i) SBM is used in FrodoKEM and
NTRU-Prime, (ii) Karatsuba and Toom-Cook are used in SABER and NTRU, (iii) an
NTT is used in CRYSTALS-Kyber, and (iv) Montgomery and SBM are used in Falcon.

Examples of recent works employing non-digitized and digitized polynomial multipli-
cation methods are given in [90, 93, 92, 65, 97, 98, 99, 100, 101, 102, 103, 104], and
[105, 91, 106, 94], respectively. Even if several implementations of different multipli-
cation approaches are available in the literature, these dedicated implementations are
optimized for a specific operand size and a given target (e.g., high speed or low area
or low power). The matter is that this trade-off space exploration is difficult to drive
without automation. Therefore, there is a real need for access to (many) multiplications
approaches where designers can select an appropriate multiplier architecture combined
with their choice of operand lengths.

3.1 Supported Features
Concerning the gap mentioned above and the requirement for automation, this section
describes the features of the proposed generator of several polynomial multipliers,
named TTech-LIB. TTech-LIB is an open-source repository [107] of several large
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integer polynomial multipliers whose initial results on Artix-7 FPGA and 65nm ASIC
platforms appeared in [108] and more detailed results on Artix-7 FPGA, 15nm, and
65nm ASIC technologies are published in [109]. The critical features of the multiplier
generator are as follows:

(i) Flexibility: The developed multiplier generator supports five multiplication ap-
proaches: (i) SBM, (ii) Booth, (iii) 2-way Karatsuba, (iv) 3-way Toom-Cook, and
(v) 4-way Toom-Cook.

(ii) Pipelining: The proposed generator supports pipelining to reduce the critical
paths (which therefore improves the clock frequency) of the multiplier circuits.

(iii) Digitizing: The developed multiplier generator offers a parameterized digit-serial
multiplier wrapper to multiply polynomial coefficients. By default, the wrapper
instantiates a singular SBM multiplier. It can be replaced by any other multiplier
method (from the proposed TTech-LIB or otherwise) as the input/output interfaces
are compatible.

(iv) Agnostic RTL: The codes generated by the multiplier generator tool are
technology- and device-agnostic, thus being synthesizable for both FPGA and
ASIC platforms. ASIC designers can additionally generate synthesis scripts for one
of two synthesis tools, either Synopsis Design Compiler or Cadence Genus. The
user is not bound to generate only a single architecture at a time; the generator
can produce multiple solutions if asked, which will appear as separate Verilog (.v)
files.

The generated multipliers by TTech-LIB take two m-bit polynomials (a and b) as
input and result in an output of polynomial (c) with 2×m bit. The algorithmic details of
the supported multipliers (SBM, Booth, 2-way Karatsuba, 3-way Toom-Cook, and 4-way
Toom-Cook) are already described in Section 2.2. Similarly, a supported digit-serial
wrapper takes two m-bit polynomials a(x) and b(x) as input and produces c(x) as an
output. The digits of polynomial b(x) are created with different lengths, which depend
on the user choice as follows: d = m

n , where d denotes the total number of digits,
m is the length of b(x), and users can choose n that determines the length of each
digit. After digitization, the multiplication of each digit is computed serially with the
polynomial a(x). Finally, the resultant polynomial c(x) is constructed using shift and
add operations. For one-digit serial multiplication, n cycles are needed. Thus, the total
digits are d, and the total clock cycles for one m-bit polynomial multiplication with n bit
digit take ⌈d×n⌉. It is important to note that the respective users/designers can select
any multiplication method inside the proposed digit-serial wrapper. For experiments in
this work, an SBM multiplication method is used.

Since the proposed library is aimed at large polynomials, the 2-way Karatsuba, 3-way
Toom-Cook, 4-way Toom-Cook, and Booth multipliers, generated in the proposed
TTech-LIB, actually implement the SBM strategy. The implementation of SBM, Booth
and our digit-serial wrapper produces resultant polynomial c(x) serially while 2-way
Karatsuba, 3-way Toom-Cook and 4-way Toom-Cook multipliers use a hybrid approach
(as they utilize a combination of both serial and parallel execution of SBM for the
computations).

The proposed generator architecture in TTech-LIB provides only the polynomial
multiplication without modular reduction. For modular reduction over prime and
binary elliptic curves, NIST-specified reduction routines [110] can be employed after the
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multiplier circuit generated by TTech-LIB. Similarly, in the case of PQC algorithms, an
additional m-bit subtractor is required after the multiplier circuit for modular reduction
when polynomial coefficients need to multiply iteratively. The size of the polynomial
coefficient (m) depends on the specific PQC algorithm being used.

3.2 Proposed Multiplier Generator Architecture
Fig. 11 shows the architecture of the multiplier generator that supports TTech-LIB. It
shows that the generator engine takes inputs from a simple XML file structured around
a few keywords. The descriptions are given below.

Figure 11: Structure of the proposed multiplier generator. Green, orange, and gray portions
identify the input parameters, multiplier generator, and generated scripts and RTL files as
output.

The “target”, “lib”, and “effort” keywords are used to generate script files for the
ASIC platform, where the “target” keyword specifies the name of the commercial
synthesis tool (genus or dc), the “lib” keyword specifies the used library for the targeted
synthesis tools, and “effort” keyword determines the level of synthesis effort and can
take one of three values: low, medium, and high.

The “multiplier” keyword specifies the name of the multiplication method to gen-
erate and TTech-LIB takes the following names of the multiplication methods as
input: (i) schoolbook (for SBM), (ii) booth (for Booth), (iii) 2_way_karatsuba (for
Karatsuba), (iv) 3_way_toom_cook (for Toom-Cook with splitting levels of three), (v)
4_way_toom_cook (for Toom-Cook with splitting levels of four), and (vi) sbm_digitized
(for digitized multiplication).

The “reset” keyword determines the reset behavior (rising or falling edge of the
clock) for the generated multiplier circuit. The “width1” and “width2” keywords provide
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the length of the polynomials as input operands to the multiplier. The “clock” keyword
defines the timing constraint. Users can use “digit_size” and “pipeline” keywords to
target different digit sizes and pipeline stages based on their application needs. To
generate non-pipelined multiplication circuits, the value for “pipeline” must be set to
one. The multiplier generator (orange portion in Fig. 11) takes all the parameters as
input using the parser and generates the corresponding Verilog HDL and script files
in respective directories. The generated code is pure RTL, therefore platform and
technology agnostic.

The structure of the proposed TTech-LIB is relatively simple and includes five
directories, i.e., (i) bin, (ii) run, (iii) src, (iv) synth, and (v) vlog. As the name specifies,
bin and run directories contain the essential files to compile and execute the project.
The src directory contains the library source files. The synth and vlog directories keep
the generated scripts and Verilog files, respectively. All the multipliers use an identical
interface, meaning the inputs are always clk, rst, a, and b while the output is always c.

The complete project files (written in C++) are freely available to everyone on a
GitHub repository [107]. To compile and execute the project source files, the current
directories should be /TMlib/src and /TMlib/run, respectively. Moreover, source
compile.sh and ../bin/libgen.exe commands can use to compile and run the source files.

3.3 Implementation Results
The proposed multiplier generator supports different multiplication architectures: non-
digitized and digitized. Also, the implementation results are given on distinct platforms
(FPGA and ASIC). A 15nm [111] and a 65nm technology are used for logic synthesis
on the ASIC platform, while an Artix-7 device is used for synthesis on FPGA. The tools
used for logic synthesis on ASIC and FPGA platforms are Cadence Genus and Vivado
IDE. The NIST-recommended prime (192, 224, 256, 384, and 521) and binary (163,
233, 283, 409, and 571) elliptic curve fields are used for the performance evaluation
of the supported non-digitized multipliers. To assess the performance of the digitized
wrapper, different digit sizes are considered for the operand lengths 521, 571, and 1024.
The performance of our generated multipliers is evaluated in terms of various design
parameters, i.e., clock frequency, latency, area, and power. The frequency, area, and
power values are obtained directly from the tools for both FPGA and ASIC evaluations.
At the same time, latency is calculated using Eq. 13.

latency (µs) =
(

clock cycles

frequency (MHz)

)
︸ ︷︷ ︸

non−digitized

× totaldigits

︸ ︷︷ ︸
digitized

(9)

Non-digitized multipliers on ASIC and FPGA platforms. Figures 12 and 13
show the implementation results for non-digitized polynomial multiplication methods
(including non-pipelined and pipelined) over the NIST-recommended prime (P-192 to P-
521) and binary (B-163 to B-571) fields utilized in ECC-based public-key cryptosystems
on ASIC (65nm technology) and Artix-7 FPGA3. Moreover, Fig. 12a to 12d and Fig. 13a
to 13d indicate the operand size and design feature (area in µm2 for ASIC and slices for
FPGA, power in mW , frequency in MHz and latency in µs) on horizontal and vertical

3This FPGA is designed in modern 28nm technology.
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axis. The area of an FPGA implementation can be estimated in terms of LUTs, slices,
Regs, DSP, and carry blocks. The implemented multipliers utilize LUTs, slices, Regs,
and several F7 & F8 muxes. DSP and carry blocks are not utilized. Therefore, Fig.
13a shows slices as an area of the implemented multipliers because later slices are also
utilized to define figures of merit.
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(b) Power vs. operand size
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(c) Frequency vs. operand size
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(d) Latency vs. operand size

Figure 12: Results for the non-pipelined and pipelined variants of several non-digitized multipliers
on 65nm ASIC over NIST recommended prime and binary elliptic curves
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(c) Frequency vs. operand size
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(d) Latency vs. operand size

Figure 13: Results for the non-pipelined and pipelined variants of several non-digitized multipliers
on Artix-7 FPGA over NIST recommended prime and binary elliptic curves

To comprehend Fig. 12a to Fig. 12d and Fig. 13a to Fig. 13d, assume the P-192-
labeled left-first bar from the area (Fig. 12) and slices (Fig. 12) panels. Here, the field
is determined by the first letter (P for prime, B for binary), and the integer specifies the
multiplier input length. Furthermore, in figures 12 and 13, the results for five distinct
multiplication methods are shown from left to right in the following sequence: (i) SBM;
(ii) Booth; (iii) 2-way Karatsuba; (iv) 3-way Toom-Cook; and (v) 4-way Toom-Cook.
For the color scheme of implemented non-pipelined and pipelined multiplier variants,
see the legend of Fig. 12 and Fig. 13. The results for 2-stage pipelining are provided for
the pipelined multiplier variants, which are annotated with the label ‘PS2’ in Fig. 12
and Fig. 13. The highest possible frequency is obtained by increasing pipeline stages
until saturation occurs, and adding more stages is no longer beneficial. For the studied
circuits, saturation occurs if more than 2 pipeline stages are added. A third stage brings
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a minor increase in the clock frequency at a significant cost in area and power. As a
consequence, this thesis shows results only for PS2.

Concerning the non-pipelined and pipelined multipliers on ASIC 65nm technology, as
shown in Fig. 12, there is an increase in area, power, and latency characteristics with the
increase in operand length. On the other hand, there is a decrease in clock frequency
with the increase in operand length. Then, pipelining improves the performance (clock
frequency) at the cost of area and power. It is important to note that the pipelined
variant of the Booth multiplier results in minor improvements. Moreover, for every
studied multiplier, the power of the pipelined variants is always higher than the non-
pipelined ones.

The Booth multiplier uses less area than the other evaluated multipliers, as shown
in Fig. 12, for pipelined and non-pipelined versions. Additionally, the 2-way Karatsuba
variant without pipelines gets lower power values than other chosen multipliers. The
Booth multiplier uses less power for pipelined variants. The rationale is that Booth
has the simplest datapath among the multipliers under study. For example, in our
implemented architectures, SBM needs a 2m+2m bit adder, Booth requires an m bit
adder and subtractor, 2-way Karatsuba requires m+m+m bit adder and subtractor,
3-way Toom-Cook requires m

4 bit incrementer, and 4-way Toom-Cook requires sixteen
m
4 bit incrementers. For non-pipelined and pipelined implementations, variants of

Toom-Cook multipliers report higher clock frequency and lower latency values.
In contrast to ASIC evaluations, the performance of the non-pipelined and pipelined

multipliers over Artix-7 FPGA is different because the implementation platforms are
relatively different. For both non-pipelined and pipelined multipliers, as shown in Fig.
13, there is an increase in area, power, and latency characteristics with the increase
in operand length. On the other hand, there is a decrease in clock frequency with
the increase in operand length. Alike in ASIC implementations, pipelining improves
the performance (clock frequency) with an excess of both area and consumed power.
The latency trend is opposite to the clock frequency, it increases as the operand size
increases, but the pipeline stages decrease the latency. As shown in Fig. 13, the Booth
multiplier uses fewer FPGA slices than the other evaluated multipliers. Moreover, the
non-pipelined and pipelined variants of 2-way Karatsuba achieve lower power values
than other selected multipliers. Similar to the ASIC implementations, non-pipelined and
pipelined variants of a Toom-Cook multiplier result in higher clock frequency and lower
latency values.

In summary, the results obtained from ASIC and FPGA analysis of non-digitized
multipliers demonstrate that multiple design parameters, including area, power, fre-
quency, and latency, are subject to trade-offs. The findings also indicate that the choice
of a multiplier architecture depends on the application’s specific requirements. For
applications prioritizing reduced hardware resource utilization, bit-serial multiplication
approaches like SBM and Booth are more practical. Contrarily, for high-speed applica-
tions, utilizing bit-parallel multiplication approaches, including 2-way Karatsuba and
variants of Toom-Cook, offers more significant benefits.

Digitized SBM multiplier on ASIC and FPGA platforms. The experimental
results for the non-pipelined digitized multiplier wrapper on ASIC 65nm technology
are shown on the left portion of Table 3. Similarly, the right part of Table 3 provides
implementation results of the non-pipelined digitized multiplier wrapper on Artix-7
FPGA. For synthesis on both ASIC and FPFA platforms, the selected lengths of the
input operands are 521, 571, and 1024, as given in column one of Table 3. The selected
digit sizes (n) for input lengths 521 and 571 are 32, 41, 53, and 81. For an input length
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Table 3: ASIC and FPGA results for digitized multipliers of various input sizes

m n d
ASIC (65nm) FPGA (Artix-7)

Freq
MHz

Lat
µs

Area
µm2

Pow
mW

Freq
MHz

Lat
µs

LUTs Regs CBs Pow
mW

52
1×

52
1 32 17 505 1.07 106956.7 30.9 33.11 16.43 6369 1692 408 184

41 13 377 1.41 101538.7 26.1 29.15 18.28 7995 1681 416 192
53 10 340 1.55 94752.7 20.0 28.32 22.72 8079 1732 417 191
81 7 336 1.68 84321.0 15.4 34.48 15.12 6095 1758 408 220

57
1×

57
1 32 18 487 1.18 114999.8 36.7 30.12 18.06 6397 1847 447 194

41 14 369 1.55 116010.3 28.9 27.17 19.62 8750 1834 455 192
53 11 312 1.86 91393.9 18.1 26.04 20.35 9053 1880 449 187
81 8 291 2.22 76146.8 14.1 28.01 23.13 8958 1951 452 226

10
24
×

10
24

2 512 363 2.82 196131.2 38.0 14.22 72.11 10993 3634 1085 173
4 256 357 2.86 178581.2 35.1 15.89 64.48 10824 3384 928 172
8 128 353 2.90 167536.4 31.5 16.86 60.66 11074 3261 849 180
16 64 343 2.98 166533.1 30.2 17.51 58.48 10634 3248 811 185
32 32 313 3.27 148489.5 23.0 17.89 57.28 11371 3267 791 190
64 16 285 3.59 122257.8 20.8 17.89 57.04 11947 3330 792 195
128 8 268 3.82 123164.6 19.9 18.57 55.14 12207 3450 800 221
256 4 263 3.89 129542.4 19.5 18.93 54.09 11367 3740 832 247
512 2 261 3.92 136292.4 23.1 19.12 53.55 10385 4295 896 226
1024 1 259 3.95 177834.2 24.1 18.46 55.50 11462 5303 1024 235

m: is the field size or length of the inputs (in bits), n: is the digit size, d: shows total digits.

of 1024 bits, digit sizes are selected in powers of two, for n = 2 . . .1024 where the
values for digit size n and total digits d are shown in columns two and three of Table 3.

Regarding the implementation results for ASIC 65nm technology, it shows that the
increase in digit size leads to a decrease in clock frequency, as given in column four
of Table 3. The increase in digit size increases latency, as shown in column five of
Table 3. With an increase in the digit size n, the achieved results for power and area
parameters indicate behavior akin to a parabolic curve, as provided in Table 3 (see
columns six and seven). For extreme cases of too small or too large digits, the wrapper
logic becomes inefficient and may even become the bottleneck for timing. Therefore,
shorter digit lengths are more valuable for an application that demands high speed.
On the other hand, the reported results on Artix-7 reveal that the increase in digit
size increases clock frequency, as shown in column eight of Table 3. This increase in
clock frequency occurs until a saturation point is reached. Once the saturation point
is reached, clock frequency decreases with the increase in digit size. Therefore, in
this particular experiment, saturation occurs when the value for n = 512. Yet, before
saturation is achieved, tiny increments in frequency are already observed, implying that
selecting the number of digits based on frequency alone is not a good strategy. Other
reported characteristics, i.e., latency, LUTs, and power, show a non-linear behavior (see
columns nine, ten, and thirteen of Table 3). As summarized, the implementation results
achieved after synthesis (clock frequency, area in terms of LUTs, Regs and Carry blocks,
latency, and power) for FPGA are different compared to ASIC as the implementation
platforms are relatively different.

The results for various digit sizes of 1024 × 1024 SBM multiplication method on
15nm technology are presented in Table 4. The selected length of input operands is
1024, as shown in column one of Table 4. For an input length of 1024 bits, digit sizes
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Table 4: Synthesis results for 1024×1024 digitized multiplier on ASIC 15nm

m n d Freq
(MHz)

Lat (µs) Area
(µm2)

Pow
(mW )

1024×1024

2 512 909 1.12 19182.7 21.0
4 256 884 1.15 19059.8 19.9
8 128 862 1.18 18367.2 21.2
16 64 840 1.21 17398.7 20.9
32 32 829 1.23 17105.5 20.8
64 16 826 1.23 17523.4 20.5
128 8 822 1.24 17460.4 19.9
256 4 819 1.25 18594.0 23.5
512 2 813 1.25 19719.6 25.4
1024 1 806 1.27 22979.3 30.2

m: specifies the inputs length (in bits), n: shows the digit size, d: is the total digits.

are selected again in powers of two, for n = 2 . . .1024 where the values for digit size n
and total digits d are shown in columns two and three of Table 4. Columns four to seven
provide the frequency (Freq in MHz), latency (Lat in µs), area (in µm2), and power
(in mW ). The results show that the increase in digit size reduces clock frequency, as
given in column four of Table 4. On the other hand, the increased digit size increases
latency, as presented in column five of Table 4. With an increase in the digit size n,
the achieved power and area parameters results indicate behavior similar to a parabolic
curve, as shown in the last two columns of Table 4. Similar to the results obtained on
65nm technology, for extreme cases of too small or too large digits, the wrapper logic
becomes inefficient and may even become the bottleneck for timing. Therefore, shorter
digit lengths are more useful for an application that demands high speed.

The implementation results for identical values of m, n, and d in Table 3 and Table
4 achieved on 15nm technology outperform the results obtained on 65nm technology,
as expected. More specifically, the 15nm technology allows for a threefold increase in
clock frequency with a significant reduction in area and power.

3.4 Figures of Merit and Trade-offs
The previous section has presented only the implementation results for non-digitized and
digitized multiplier wrapper. However, FoMs are defined to analyze the performance of
non-digitized and digitized multipliers using the combined effect of their characteristics
simultaneously. Thus, an FoM to evaluate the area and performance for both ASIC
and FPGA platforms is defined using Eq. 10. For FPGA, the number of slices is
utilized as area in Eq. 10. The higher the FoM values, the better performance of the
multiplier. Similarly, an FoM is calculated using Eq. 11 to evaluate the power and
latency parameters.

FoM = 1
area (µm2)× latency (µs) (10)

FoM = 1
power (mW )× latency (µs) (11)

FoM for non-digitized multipliers on ASIC and FPGA platforms. The calculated
values of defined FoMs for both non-pipelined and pipelined multipliers on ASIC and
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Figure 14: FoMs regarding area vs. latency and power vs. latency for various non-digitized
multipliers on ASIC.

FPGA platforms are illustrated in figures 14 and 15, respectively – where PS2 (a 2-stage
pipeline) shows the pipelined variants for different multipliers. For each panel in figures
14 and 15, the multipliers are shown from left to right in the following order: (i) SBM,
(ii) Booth, (iii) 2-way Karatsuba, (iv) 3-Way Toom-Cook and (v) 4-way Toom-Cook.

For the ASIC platform (Fig. 14), the trend shows a decrease in the FoM values with
increased operand size. Concerning Fig 14a, the value of the non-pipelined multiplier is
lower than the pipelined multiplier except for the Booth and variants of Toom-Cook
multipliers. For pipelined multipliers, the highest value of FoM for Eq. 10 is achieved
for the 2-way Karatsuba multiplier. The performance (latency) versus area trade-off
for non-pipelined multipliers could be graded, from highest to lowest, as (i) Booth, (ii)
4-way Toom-Cook, (iii) 3-way Toom-Cook, (iv) 2-way Karatsuba and (v) SBM. For
similar performance versus area trade-off, the possible grading from highest to lowest
for the pipelined multipliers is (i) 2-way Karatusuba, (ii) 4-way Toom-Cook, (iii) Booth,
(iv) 3-way Toom-Cook and (v) SBM. As far as the trend from Fig. 14b is concerned, the
value of the FoM for non-pipelined multipliers is higher than pipelined variants except
for the 4-way Toom-Coom multiplier. For non-pipelined and pipelined variants, the
highest FoM value for Eq. 11 is achieved for a 2-way Karatsuba and 4-way Toom-Cook
multiplier. Based on Fig. 14b, the latency versus power trade-off of the non-pipelined
multipliers could be graded as (i) 2-way Karatsuba, (ii) 3-way Toom-Cook, (iii) 4-way
Toom-Cook, (iv) Booth and (v) SBM. Furthermore, for similar performance versus
power trade-off, the possible grading from highest to lowest for pipelined multipliers is
(i) 4-way Toom-Cook, (ii) 2-way Karatusuba, (iii) Booth, (iv) 3-way Toom-Cook and
(v) SBM.

Similarly, for the FPGA platform (Fig. 15), the values for the non-pipelined multipliers
are lower than the pipelined variants, except for the SBM and 3-way Toom-Cook
multipliers. For pipelined multipliers in Fig. 15a, the highest FoM is achieved for the
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(b) Power × latency

Figure 15: FoMs regarding area vs. latency and power vs. latency for various non-digitized
multipliers on FPGA.

4-way Toom-Cook. The performance (latency) versus area trade-off for non-pipelined
multipliers could be ranked, from highest to lowest, as (i) Booth, (ii) 4-way Toom-
Cook, (iii) 3-way Toom-Cook, (iv) 2-way Karatsuba and (v) SBM. For equivalent
performance versus area trade-off, the possible ranking from highest to lowest for the
pipelined multipliers is (i) 4-way Toom-Cook, (ii) Booth, (iii) 3-way Toom-Cook, (iv)
2-way Karatusuba and (v) SBM. Notice that SBM is the least preferred multiplier
according to the defined FoMs. Concerning Fig. 15b, for non-pipelined and pipelined
variants, the highest FoM value is achieved for 3-way and 4-way Toom-Cook multipliers,
respectively. Moreover, the performance (latency) versus power trade-off of the non-
pipelined multipliers could be ranked as (i) 3-way Toom-Cook, (ii) 4-way Toom-Cook,
(iii) 2-way Karatsuba, (iv) Booth, and (v) SBM. For identical performance versus
power trade-off, the ranking from highest to lowest for pipelined multipliers is (i) 4-way
Toom-Cook, (ii) 3-way Toom-Cook, (iii) 2-way Karatusuba, (iv) Booth, and (v) SBM.

Figures 14 and 15 assist the designer in selecting a suitable multiplier architecture
according to application requirements. From an area perspective, SBM is the best
candidate. However, even if SBM has a relatively small footprint and relatively small
power consumption, this comes at the expense of performance. The pipelined variant
of the Booth multiplier is also a good candidate with the least power and optimal
performance compared to the non-pipelined version of a 4-way Toom-Cook multiplier.
These examples show the PPA trade-offs that are considered based on the FoMs in this
study.

FoM for digitized SBM multiplier on ASIC and FPGA platforms. A 1024×1024
multiplier is considered with various digit sizes to calculate FoM for evaluation on ASIC
and FPGA platforms. The calculated FoM results for ASIC on 15 and 65nm technologies
are shown in Fig. 16, while the calculated values of FoM in terms of area×latency and
power×latency for FPGA are shown in figures 17a and 17b, respectively.
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Figure 16: FoMs in terms of area × latency and power × latency for digitized wrapper with
SBM multiplier on ASIC
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Figure 17: FPGA FoMs in terms of area × latency and power × latency for digitized wrapper
with SBM

Let us consider only the FoM results from Fig. 16 for evaluations; it becomes clear
that the extreme cases lead to suboptimal results for both FoMs (area×latency and
power×latency) on 65nm technology (presented in figures 16a and 16b). This is not
evident for the FoMs calculated on the 15nm technology where longer digit cases lead to
suboptimal results. For the studied 1024 × 1024 multiplier, the variant with n= 64 and
d= 16 presents an optimal solution on 65nm technology. Similar values, such as n= 32
and n= 128, also give very close to optimal solutions. On 15nm technology, the optimal
solutions for area × latency are achieved for n = 16 and n = 32. Additional closer
values to optimal solutions are achieved for digit sizes 2,4,8,64, and 128. Similarly, a
digit size for n= 4 provides the best power × latency solution.

There are multiple approaches to evaluating FoM results on FPGA. For example, the
number of FPGA basic building blocks for area evaluation are slices, LUTs, flip-flops,
and carry units. However, the FoM in Eq. 10 can be calculated using different metrics
of interest (such as slices, LUTs, flip-flops, or carry blocks). This study substitutes
FPGA slices for the area in Eq. 10. Therefore, Fig. 17a shows that the FoM values
for n= 512 and d= 2 result in an optimal solution. Fig. 17b reveals that the optimal
solution is achieved for n= 2 and d= 512. Hence, they are all very close.

3.5 Comparison and Discussion
To perform a realistic and reasonable comparison with state-of-the-art, we have used
similar operand lengths, digit sizes, and implementation platforms as presented in
Table 5. Column one presents the reference design (Ref). The implemented multiplier,
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utilized platform (device), and targeted operands length (m) are given in columns two
to four. Different values of m are considered in the existing implementations to present
results for polynomial multiplications. However, for our comparison, we have considered
only the larger operands. The implemented circuit’s clock frequency (Freq in MHz)
is given in column five of Table 5. The last two columns (six and seven) provide the
latency (Lat in µs) and the hardware resources (in µm2 for ASIC and in LUTs for
FPGA), respectively. In Table 5, ‘N/A’ is utilized to denote values that are not provided.

Table 5: Comparison with state-of-the-art multipliers

Ref Multiplier Device m Freq (MHz) Lat (µs) Area (µm2)/LUTs

[97] BL-PIPO 65nm 163 N/A N/A 5328 GE
[112] LCHMA 65nm 163 68.49 N/A 321692

Virtex-4 163 33.78 N/A 34118 (19030 slices)
[92] Radix-2 Montgomery Virtex-6 1024 53.23 19.26 2566
[98] Systolic Montgomery 90nm 13 100 0.91 4782
[113] Montgomery Virtex-5 1024 400 0.88 6105 slices
[104] PCA approach Virtex-II 163 177.8 0.91 225 slices

[90] 2-way Karatsuba Virtex-7
128 104.3 0.61 3499
256 74.5 1.71 7452
512 51.6 4.96 20474

[91] DSM Virtex-6 571 258.5 0.03 10983 (when ds=64)

[106] DSMM Virtex-7
2048 N/A N/A 18067 (when ds=2)
2048 N/A N/A 33734 (when ds=4)
2048 N/A N/A 62023 (when ds=8)

[100] SBM (digit serial) Virtex-5

571 540/CCs=571 1.05 1731 (when ds=1)
571 550/CCs=286 0.52 1730 (when ds=2)
571 572/CCs=143 0.25 2302 (when ds=4)
571 450/CCs=72 0.16 3451 (when ds=8)
571 400/CCs=36 0.09 5754 (when ds=16)
571 400/CCs=24 0.06 8051 (when ds=24)
571 360/CCs=18 0.05 10350 (when ds=32)

TW

SBM 65nm 163 500 0.326 29341 (11727 GE)
Virtex-4 163 65.68 2.48 1934 (987 slices)

Booth
Virtex-4 163 131 1.24 565 slices
Virtex-6 1024 71.5 14.32 2429
65nm 163 824 0.19 20258.6
Virtex-5 1024 39.35 13.01 4113 slices

2-way Karatsuba Virtex-7
128 167.4 0.38 2110
256 119.9 1.06 4318
512 63.8 4.01 9582

SBM Wrapper

Virtex-6 571 46.4 1.74 6181 (when ds=64)

Virtex-7
2048 15.03 69760 25559 (when ds=2)
2048 16.6 15790 22040 (when ds=4)
2048 17.4 3760 23315 (when ds=8)

Virtex-5

571 23/CCs=571 24.82 11803 (when ds=1)
571 27.1/CCs=286 10.55 10353 (when ds=2)
571 30/CCs=143 4.76 9209 (when ds=4)
571 32/CCs=72 2.25 9399 (when ds=8)
571 33/CCs=36 1.09 8713 (when ds=16)
571 30/CCs=24 0.80 16536 (when ds=24)
571 34/CCs=18 0.52 8767 (when ds=32)

BL-PIPO: Bit level parallel in parallel out multiplier using SBM multiplication method, PCA:
programmable cellular automata, DSM: Digit Serial Montgomery multiplier based wrapper,
ds: digit size, DSMM: Digit Serial modular multiplier, GE: Gate equivalent, LCHMA: Low-
complexity hybrid multiplier architecture, TW: this work, latency reported for design [98] is in
milli-second.

Bit-serial architectures. FPGA results for operand length of 1024 are reported
in [92] where the authors have utilized a Virtex-6 device. A Radix-2 Montgomery
multiplier architecture [92] results in 25% higher clock frequency and latency than
the Booth multiplier generated by TTech-LIB. The excessive use of LUTs in their
implementation is noticeable (see the last column of Table 5). On the Virtex-5
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device, FPGA implementations for 1024-bit operand lengths are reported in [113].
The Montgomery multiplier architecture of [113] results in 9.83 times higher clock
frequency when compared to the Booth multiplier generated by TTech-LIB. Due to
higher frequency, they have achieved a latency value of 0.88µs that is comparatively
2.81 times lower than the TTech-LIB generated Booth multiplier circuit (2.48µs). On
the other hand, there is a trade-off since the generated Booth multiplier utilizes 1.48
times fewer FPGA slices.

The comparison to systolic Montgomery multiplier architecture of [98] can be a little
unfair as this study uses a 65nm technology for logic synthesis while a 90nm technology is
considered in [98]. However, the TTech-LIB-generated SBM and Booth serial multipliers
have been compared. For operands length of 13-bit over elliptic curve binary GF (213)
field, their architecture achieves 5 times lower clock frequency when compared to 163-bit
generated (by TTech-LIB) SBM and Booth multiplier implementations. The generated
SBM and Booth implementations utilize the higher area and take more computational
time as the length of the operands is 12.5 times higher than [98].

For 163-bit operands size on 65nm ASIC and Virtex-4 FPGA platforms, the low-
complexity hybrid multiplier architecture of [112] is 7.30 and 1.94 times slower in clock
frequency as compared to SBM generated multiplier by TTech-LIB. As shown in Table
5, the latency comparison is hard as the related information is not described in [112].
Moreover, the generated SBM multiplier by TTech-LIB utilizes 10.96 and 17.64 times
lower hardware resources on similar ASIC and FPGA platforms.

In [104], for 163-bit operands length, a programmable cellular automata-based
bit-serial multiplier design is reported on Xilinx Virtex-II Pro FPGA4. Therefore, this
study uses a Virtex-4 device built on a 90nm technology to provide a comparison that is
not disproportionately unfair. As shown in Table 5, the dedicated architecture of [104]
results in lower hardware resources (225 slices whereas the generated Booth multiplier
by TTech-LIB used 565) and achieves higher clock frequency (177.8MHz while the
generated Booth multiplier design in this study operates at 131MHz). This comparison
shows that there is always a trade-off between flexibility and performance (area, clock
frequency, latency, etc.).

Bit-parallel designs. A bit-parallel 2-way Karatsuba multiplier is reported in [90] for
a Virtex-7 FPGA. In terms of latency, it is 38% (for operand size of 128 bit), 39% (for
operand size of 256 bit), and 20% (for operand size of 512 bit) slower when compared to
2-way Karatsuba multiplier generated by TTech-LIB, as shown in Table 5. Additionally,
the proposed 2-way Karatsuba multiplier requires fewer FPGA LUTs (see column seven
in Table 5) as compared to [90]. The BL-PIPO multiplier of [97] on 65nm technology
utilizes 55% lower gate counts compared to the SBM multiplier generated by TTech-LIB.
However, the multiplier given in [97] shares resources with a reduction unit specific for
the 163-bit operand. The proposed multiplier generates a 2×m−1 bit output, whereas
their solution generates an m bit output.

Digitized solutions. The digit-serial Montgomery multiplier wrapper of [91] results
in 83% higher clock frequency and 58% lower latency than the proposed digitized
solution based on SBM multiplier architecture. This is valid when the digitized flavor
of polynomials multiplication is considered for comparison over different digit sizes.
Contrarily, the generated digit serial wrapper by TTech-LIB results in 56% lower hardware
resources over Virtex-6 FPGA. Another digit serial modular multiplication wrapper of
[106] results in 14% (for ds=2) lower FPGA LUTs, while for remaining digit sizes of
4 and 8, it utilizes 35% and 63% higher FPGA LUTs as compared to SBM wrapper

4The Xilinx Virtex-II Pro devices are built on a 90nm technology.
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generated by TTech-LIB. The frequency and latency parameters cannot be compared
because the relevant information is unavailable in the reference designs.

In [100], a digit-serial multiplier for the operand length of 571 bits over Virtex-5 is
described, as shown in Table 5. With the increase in digit sizes (i.e., 1, 2, 4, 8, 16,
24, and 32), the digit-serial multiplier of [100] results in an increase in the hardware
resources (LUTs) and a decrease in clock cycles (CCs) and latency. For clock frequency,
it shows behavior like a parabolic curve. This is not the case for TTech-LIB offered
digit-serial wrapper as it considers the flexibility which is not tackled in the design
of [100]. With a similar clock cycle requirement, a digit-serial wrapper generated by
TTech-LIB takes more computational time and achieves lower clock frequency than
[100]. Moreover, the wrapper generated by TTech-LIB utilizes more hardware resources
for ds = 1, 2, 4, 8, 16, and 24. For a digit size of 32 (see the last column of Table 5),
the proposed wrapper utilizes 1.18 times lower hardware resources with an overhead
in latency. Therefore, the wrapper generated by TTech-LIB outperforms in terms of
hardware resources (LUTs) for larger digit sizes compared to [100].

In summary, the comparisons and discussion reveal that the versatile and flexible
TTech-LIB multiplier generator provides, in general, a realistic and reasonable compari-
son to many existing multiplier architectures [98, 92, 104, 97, 90, 91, 106, 100]. It is
essential to highlight that some of the compared architectures also contain reduction
routines in their implementation, a feature that is not currently supported by TTech-LIB
generator but could be considered in future. Based on the results, it has been evalu-
ated that designers can explore various design parameters within TTech-LIB-supported
multiplier architectures and benefit from competitive implementations concerning the
existing literature on polynomial multipliers. Since the TTech-LIB generator produces
RTL code that is technology- and platform-agnostic, users can (also) take the code as
a starting point for their design, develop the optimized ones, and define other FoMs for
further evaluation.
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4 Design Space Exploration of SABER
This chapter provides the design space exploration of PQC algorithms for performance
improvement on the ASIC platform. The DSE process is accomplished by adopting
several memory configurations and employing wider datapaths. A SABER PQC algo-
rithm/protocol is considered as a case study in this thesis to perform the DSE process.
Section 4.1 describes the DSE process, including the SABER architectural details.
Section 4.2 describes the area, timing, and power results. The comparison to existing
state-of-the-art hardware accelerators and discussions are provided in Section 4.3.

The design space exploration, in this study, determines the adaption of various
architectural elements such as distinct memory configurations, pipelining, logic sharing,
and different data path widths with an emphasis on optimizing the design for a specific
65nm ASIC technology. Therefore, an open-source implementation of SABER is selected
to initiate the DSE process. This open-source SABER code is modeled as an instruction
set co-processor architecture, and the code is written in Verilog HDL at Register Transfer
Level. The Verilog code of the SABER co-processor can be accessed directly from [114]
and the corresponding architectural details and implementation results appeared in [30].
The top-level block diagram of the SABER architecture of [30] consists of four units:
(i) a data memory; (ii) a program memory; (iii) a dedicated finite state machine (FSM)
controller for efficient control functionalities; and (iv) SABER building blocks. The
building blocks of SABER are (i) a polynomial Vector-Vector multiplier wrapper; (ii)
variants of secure hash algorithms, i.e., SHA3-256, SHA3-512, and SHAKE-128; (iii) a
binomial sampler; (iv) AddPack; (v) AddRound; (vi) Verify; (vii) CMOV; (viii) Unpack;
(ix) CopyWords; and (x) BS2POLVECp.

Note that the open-source SABER code of [114] was developed specifically for an
FPGA platform, but in this study, the ASIC platform is targeted. Therefore, a baseline
ASIC architecture is developed to evaluate SABER on a 65nm commercial technology to
fulfill the DSE premise. The strategy employed in this thesis differs from the approach
of [30], as BRAM is replaced with an SRAM in the baseline design. Furthermore, a
commercial memory compiler from a partner foundry is used in this work to generate the
same size SRAM memory. The next section will show multiple variants where several
memory instances have been used with different sizes. It is essential to mention that
the baseline design in this study is still a co-processor architecture and assumes that the
program memory resides outside the SABER accelerator. The other building blocks are
considered as implemented in the open-source SABER accelerator of [114], but most
of them are modified during the DSE process, which will be detailed in the upcoming
sections.

The DSE process is initiated with a SABER serial architecture and completed with
parallel designs. Therefore, a total of eight SABER designs include in the DSE, one
corresponds to the baseline and the remaining seven are optimized ones, including serial
and parallel techniques. The details of the corresponding serial and parallel SABER
designs are described in the upcoming section.

4.1 Serial and Parallel SABER Architectures
A summary of the DSE process is shown in Fig. 18, where Fig. 18(a) describes the serial
SABER design by using several optimization approaches (pipelining, resource sharing
and different memory configurations). In contrast, Fig. 18(b) provides the parallel
SABER architecture using a wider 256-bit data path strategy instead of a 64-bit data
path utilized in the baseline serial SABER design.
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(a) Serial SABER architecture by utilizing different memory configurations, pipelining, and resource sharing.

(b) Parallel SABER architecture by employing wider data path strategy.

Figure 18: Block diagrams of the designs generated during the design space exploration.

Hence, Fig. 18(a) and Fig. 18(b) show different SABER designs with different
names to differentiate the studied architectures from one another. For example, the
prefixes DP and SP mean that the architecture employs a dual-port or a single-port
memory. Similarly, the PIP prefix implies that the architecture is pipelined. Moreover,
the prefixes SS and DS show that the design uses single-sponge and double-sponge
KECCAK functions inside the SHA3 variants for hash operations of parallel SABER
designs (of Fig. 18(b)). A prefix Parallel determines that the SABER design supports a
256-bit data path instead of a 64 bit. Note that in the serial SABER architectures of
Fig. 18(a), single-sponge is used in the SHA3 variants, and the architectures differ in
different memory sizes and number of memory instances used. On the other hand, in
the parallel SABER implementations of Fig. 18(b), memory instances and size are fixed,
but the architectures vary with single- and double-sponge functions. Therefore, based
on this terminology, the following architectures have been considered:
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• Baseline

– DP_1(1024x64)

• Optimized

– DP_2(1024x32)
– DP_4(1024x16)
– DP_8(512x16)
– PIP_DP_4(1024x16)
– PIP_SP_4(256x64)
– SS_Parallel_SP_4(256x64)
– DS_Parallel_SP_4(256x64)

Subsequently, seven optimized designs have been presented; the first five optimized
designs have been generated from the baseline design from Fig. 18(a), and the last
two-optimized designs have been presented from Fig. 18(b). The memory is structured
as i(m×n), where i shows the number of memory instances, m determines the number
of memory addresses, and n implies the data width of each address.

In contrast to the open-source design of [114], the DSE process led to the creation
of new units in addition to the FSM controller and SABER building blocks shown in
Fig. 18(a): (i) memory manager; (ii) pipeline register; and (iii) shared shift buffer. All
these units are common to all of the studied serial SABER architectures except for the
pipeline register, which is considered only in pipeline architectures, i.e., PIP_DP and
PIP_SP. It is essential to highlight that several modifications have been performed in
the SABER building blocks to synchronize their inputs/outputs with the memory timing
requirements. The modified SABER building blocks are outlined with green color lines
in Fig. 18(a).

On the other hand, the parallel SABER designs constructed from Fig. 18(b) utilize
four smaller SRAM-based RegFile memories having a size of 256 × 64 each. The
difference is that in Fig. 18(a), all the memory instances operate serially. This means
that at one time, only one 64-bit word can read/write on one memory. But in Fig. 18(b),
four smaller memories operate in parallel. Each memory can read/write one 64-bit word
in one clock cycle. So, four memory instances in parallel can read/write one 256-bit
word in one cycle. To deal with 256-bit words in Fig. 18(b), an additional address
decoder unit is required. This address decoder unit prepares the corresponding 64-bit
or 256-bit word for the SABER controller to operate SABER building blocks.

The following text will describe the design blocks of Fig. 18(a) and Fig. 18(b)
in detail. Moreover, from now on, the baseline and optimized SABER architectures
will be referred to using abbreviated forms. For example, the optimized SABER
PIP_SP_4(256×64), SS_Parallel_SP_4(256×64), and DS_Parallel_SP_4(256×64)
designs will be abbreviated as PIP_SP, SS_Parallel, and DS_Parallel.

4.1.1 Memory Manager
In Fig. 18(a), the name ‘memory manager’ comes from the smart memory synthesis
[115] process concept. The smart memory synthesis is the observation that smaller,
more distributed memories can benefit an ASIC design because the smaller memories
need simpler address decoder units which are faster. This, combined with the fact that
part of the address decoding is now described as logic and can be co-optimized with the
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remainder of the design, leads to performance improvements with a sometimes marginal
increase in area. Hence, in this study, a smart memory synthesis strategy is explored
within the limitations of a commercial memory compiler. For the key encapsulation
mechanism, when security is equivalent to AES-192, SABER needs 992, 1344, and 1088
bytes for generating a single public-key, secret-key, and the cipher text [21]. This need
confirms that a relatively large memory size is needed. Hence, a dual-port memory
size of 1024×64 is employed in the FPGA design of SABER in [30] and the baseline
SABER design in this work incorporates the same memory size of 1024×64.

The DSE process is initiated where the word size of the employed large memory
of size 1024×64 is divided into smaller chunks (32 and 16), and then the number of
memory instances is increased accordingly. With this division, the memory structure
becomes DP_2(1024×32) and DP_4(1024×16). More precisely, DP_2(1024×32)
means that two instances of a dual-port memory are employed where the total number
of addresses is 1024, and the data stored on each address is 32-bit. For the memory
structure of DP_4(1024×16), four instances of dual-port memory are used where the
total number of addresses is 1024, and the word size is 16. As expected, these memory
choices increase clock frequency but at the expense of area and power. Afterward,
from DP_4(1024×16) memory structure, another architecture is constructed where
the number of addresses is (also) divided to take half per memory (i.e., from 1024 to
512). In this case, the memory structure becomes DP_8(512×16), and this means that
eight instances of dual-port memory are used where the total number of addresses is
512, and the word size is 16. Later in the results section, I will show that this design
choice increases area and power with a minor gain in operating frequency. Hence, at
this stage, it has been realized that further dividing memories into smaller chunks is no
longer beneficial, and other optimization approaches must be explored.

Hence, pipelining is utilized after dividing the number of addresses and data widths
for memories. In the first pipelined design, i.e., PIP_DP, the same 4(1024×16) memory
structure is chosen as in DP_4(1024×16). The second pipelined architecture, however,
utilizes compiled RegFiles5. In this DSE process, one of the limitations of using a
RegFile is that the IP available to the author was for a single-port instead of a dual-port.
Thus, converting the design from a dual-port memory to a single-port requires several
modifications in the building blocks to generate their correct functionalities. Therefore,
using single-port memory increases the overall clock cycle count, but this will show later
in the results section that this increase is beneficial since the improved clock frequency
still reduces the overall latency for all SABER operations. Hence, the memory structure
is PIP_SP_4(256×64).

4.1.2 Pipelining
Finding an appropriate location for the placement of pipeline registers in a digital design
is a critical task. Therefore, a pipeline register is placed at the memory output in the
DSE process because evaluating the critical path of several architectures (in Section
4.2) shows that memory is the performance bottleneck of the design. Therefore, in
the PIP_DP and PIP_SP architectures in Fig. 18(a), the input to the pipeline register
is from the memory while the output is connected to the binomial sampler. The red
dotted lines in Fig. 18(a) mean that the pipeline register is connected with the binomial
sampler through the FSM controller.

5RegFiles are not flip-flops. This vendor-specific terminology for a compiled 6T SRAM
memory is advantageous when bit density can be traded-off with performance. Its vendor also
calls it a “high-speed” variant of SRAM.
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4.1.3 Shared Shift Buffer
Several building blocks of SABER, i.e., AddRound, AddPack, BS2POLVECp, and
multiplier, require a shift register to read from many memory addresses and accumulate
(hundreds of) bits into local registers. For example, a 320-bit long register is required in
AddPack and BS2POLVECp, while a 64 and 676-bit register is required in AddPack and
Multiplier blocks, respectively. Note that the SABER building blocks produce outputs
serially, so the shift buffer can be shared as there are no concerns with concurrent access.
Therefore, a 676-bit register is shared across AddRound, AddPack, BS2POLVECp, and
Multiplier blocks. Using a shared shift buffer results in a 10.3% decrease in the total
area with no impact on performance. This shared buffer is common in all the optimized
designs of Fig. 18(a).

4.1.4 Address Decoder Unit (ADU)
The address decoder unit is only involved in the SABER design of Fig. 18(b), where four
instances of smaller memories are utilized and each memory can read/write one 64-bit
word in one clock cycle. Recalling again, four memory instances in parallel perform one
256-bit word as read/write in one cycle. Therefore, the ADU selects an appropriate
memory to read/write a 64-bit word. Moreover, it also communicates to the SABER
controller to pass/collect 64-bit (for SHA3 variants) or 256-bit (for other SABER blocks)
data as input/output to/from the SABER core.

4.1.5 SABER Building Blocks
The blue portion in Fig. 18(a) and Fig. 18(b) shows the SABER building blocks, including
the FSM controller to drive the SABER operations (i.e., key generation, encapsulation,
and decapsulation). These SABER building blocks can be implemented using different
approaches. However, serial and parallel implementations of these building blocks are
described below.

SHA3-256/512 & SHAKE-128. Fig. 18(a) and Fig. 18(b) show that SABER
uses SHA3-256 and SHA3-512 hash functions. Moreover, it also uses an EoF (SHAKE-
128). These hash and EoF functions use the KECCAK sponge function to compute
the ‘state permutations’. Hence, in Fig. 18(a) and Fig. 18(b), these hash functions
are implemented in a wrapper across a single KECCAK core like implemented in [30].
For Fig. 18(a), an open-source high-speed implementation of the KECCAK core is
selected, originally developed by the KECCAK team in [116]. This high-speed KECCAK
core computes ‘state permutations’ iteratively (or in a serial fashion) after every 28
clock cycles; generating 1,344 bits of pseudo-random string in 28 cycles. The serial
implementation of the KECCAK core is illustrated in Fig. 19(a). For the parallel SABER
architecture of Fig. 18(b), a serial KECCAK core of [116] is modified with orange
additional blocks to half the clock cycles, and the update block design of the KECCAK
core is shown in Fig. 19(b).

The serial implementation of the KECCAK core of Fig. 19(a) needs an instance
each of (i) Buffer_Unit, (ii) Const_Gen_Unit, and (iii) Round_Unit. The initial
vectors, intermediate, and final results are kept in the Buffer_Unit. Also, Buffer_Unit
holds different counter values for generating KECCAK round vectors. Therefore,
Const_Gen_Unit generates 64-bit round vectors based on a 5-bit counter value coming
from Buffer_Unit. The Round_Unit specifies the KECCAK sponge function, and its
implementation relies on implementing five KECCAK building blocks, i.e., theta, pi,
rho, chi, and iota6. Moreover, the Round_Unit takes two 64-bit inputs, one from the

6The theta, pi, rho, chi, and iota KECCAK building blocks operate on 64-bit width, and
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(a) Serial design of KECCAK, implemented in [116].

(b) Parallel design of KECCAK.

Figure 19: KECCAK cores.

Const_Gen_Unit, and another from the Buffer_Unit. It generates a 64-bit vector as
output which is further connected as an input to a register inside the Buffer_Unit. This
technique takes 28 cycles to serve 24 KECCAK rounds iteratively: 24 cycles are for 24
KECCAK rounds, and an additional 4 cycles determine the ‘wait’ until the registers in
the datapath are free. This serial KECCAK implementation architecture can also be
named KECCAK with a single-sponge function.

On the other hand, the parallel implementation of the KECCAK core of Fig. 19(b)
can also be named KECCAK with a double-sponge function. It details how the number
of clock cycles of the KECCAK core can be reduced by using additional orange-colored
boxes. It includes a Buffer_Unit, two blocks of the Const_Gen_Unit and Round_Unit.
As the name implies, the Buffer_Unit keeps the initial, intermediate, and final KECCAK
results. Like serial (or single-sponge) KECCAK architecture, it also holds counter values
for generating round vectors. Therefore, the Buffer_Unit is modified by adding a
register and an accumulator. Each register takes a 64-bit vector from the corresponding
Round_Unit block, while an accumulator is mandated to produce the final result for the
next KECCAK round. Similarly, each block of Const_Gen_Unit takes a 5-bit counter
value as input from Buffer_Unit and produces a 64-bit constant vector as an output.
Each instance of the Round_Unit (or sponge function) takes two 64-bit inputs and
produces a single 64-bit output for the registers in the Buffer_Unit. The first 64-bit
input to the corresponding sponge function is from the round constants block. The
second 64-bit input to the first sponge function is from the KECCAK buffer (after the
accumulation) and its output goes as an input to the second sponge function. This
means the sponge functions are connected serially, one after another. The outputs of
the first and second sponge functions are connected as inputs to the KECCAK buffer to
accumulate the results. Employing double-sponge KECCAK functions, 14 clock cycles

the related mathematical functions to implement these KECCAK building blocks are described
in [68].
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are (only) required to operate 24 KECCAK rounds. Compared to the SABER FPGA
design of [30], the double-sponge function divides the cycle counts by two with area
and power overhead.

Binomial sampler. A binomial sampler operates on parameter µ and computes a
sample from a µ-bit pseudo-random input string. Let us assume r[µ−1 : 0] is a pseudo-
random string. Then the sample is computed by subtracting the Hamming weight of
the most-significant µ/2 bits from the Hamming weight of the least-significant µ/2
bits, i.e., by computing HW(r[µ/2 − 1 : 0]) – HW(r[µ− 1 : µ/2]), where HW() specifies
the Hamming weight. In the SABER PQC protocol, the secret polynomial coefficients
are computed from centered binomial distribution using parameters µ = 10, µ = 8,
and µ= 16 for LightSABER, SABER, and FireSABER. Hence the secret polynomial
coefficients in SABER PQC KEM must be in a range [-5, 5], [-4, 4], and [-3, 3] for
LightSABER, SABER, and FireSABER. As the parameter µ is very small in all variants
of SABER, it is very simple to implement a binomial sampler using bit manipulations.
Therefore, in Fig. 19(a) and Fig. 19(b), the binomial sampler is a combinational block
that directly maps the input string into a sample value based on the parameter value µ.
A sample is represented as a 4-bit signed-magnitude number for all variants of SABER.
In the reference C/C++ implementations of SABER, a sample is represented using
2’s complement number system. However, it has been reported in [30] that using a
signed-magnitude number system reduces hardware complexity. Therefore, this study
also uses a signed-magnitude number system to represent a sample.

In the binomial sampler of Fig. 19(a), two 64-bit words are loaded from the data
memory and stored in a 128-bit buffer. After that, for SABER where parameter µ= 8,
16 (128/µ= 8) samples are generated in parallel and stored in a 64-bit output buffer
(samples × 4, where 4 represent a sample in a signed-magnitude number system for
µ= 8). Finally, the 64-bit word from the output buffer is written back into data memory.
On the other hand, in the binomial sampler of Fig. 19(b), eight 64-bit words are loaded
from the data memory and stored in a long 512-bit buffer. Then, for SABER where
parameter µ = 8, 64 (512/µ = 8) samples are generated in parallel and stored in a
256-bit output buffer (samples × 4, where 4 represent a sample in a signed-magnitude
number system for µ= 8). Finally, the 256-bit word from the output buffer is written
back into data memory. Generating 64 samples in parallel in Fig. 19(b) is beneficial to
reduce clock cycles with area and power overhead.

Multiplier. In ideal and module lattice-based cryptosystems, the performance
of the polynomial multiplier plays a critical role. Hence, SABER uses power-of-two
moduli p= 210 and q = 213, the fastest native NTT-based polynomial multiplier is not
beneficial for SABER. The reference C/C++ implementation of SABER uses Toom-
Cook polynomial multiplier, the second fastest multiplier after NTT. The structure of
the Toom-Cook multiplier is recursive, and it is difficult to transform into an iterative
algorithm. In [86], a hardware implementation of the Toom-Cook multiplier is described
for lattice-based cryptosystems where several challenges have been identified when
implementing the recursive function calls of the Toom-Cook.

In this thesis, an SBM multiplier is realized for SABER PQC KEM. Recalling once
more, SABER involves public and secret polynomials of degree 256. Therefore, a
schoolbook multiplier of degree 256 is shown in Algorithm 11.
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Algorithm 11: Traditional integer polynomial SBM multiplier for SABER [30].
Input: Polynomial a(x) and b(x) of degree 256
Output: The product of a(x) · b(x) of degree 256

1 acc(x)← 0
2 for i = 0; i < 256; i = i + 1 do
3 for j = 0; j < 256; j = j + 1 do
4 acc[j] = acc[j] + b[j].a[i] mod Zq

5 b = b.x mod Rq

6 return acc

Line one of Algorithm 11 initializes an accumulator buffer with 0. Moreover, this
accumulator buffer stores the multiplication result. Line four of Algorithm 11 multiplies
the i-th coefficient of a(x) with the j-th coefficient of b(x) followed by modular
addition and reduction operations. This is the integer polynomial multiplication of two
polynomials of degree 256. After executing the inner for loop, line five of Algorithm
11 multiplies the rotated polynomial b(x) with x in Rq, where Rq is a ring of the
polynomial.

Algorithm 11 describes the traditional way to multiply public and secret polynomials
of degree 256; specific to SABER, some optimizations can be made to reduce the
complexity of the SBM multiplier. The public polynomial is represented with a(x),
and the secret polynomial is shown with s(x). Moreover, the public polynomial
multiplications are computed in Rp and Rq. The coefficients of a secret polynomial
are generated from the centered binomial distribution, and depending on the variant of
SABER, the secret coefficients are contained in the intervals [-3,3], [-4,4], and [-5,5]. In
addition, the modular reduction in p and q is free in SABER as these are in power-of-two.
Hence, reduction-free modular multiplication to multiply SABER polynomial coefficients
is shown in Algorithm 12 where the coefficient-wise polynomial multiplication is shown
using shift and add operations rather than a true integer multiplier. It is important to
note that the coefficient of secret polynomial s is in a signed-magnitude form, and the
multiplications need to perform only with their absolute values. The accumulator buffer
must update by adding or subtracting the results based on the sign-bit of the coefficient
of s. As the modulus q is a power of 2 and the coefficients of a are represented as
13-bit numbers, modulus reduction is implicit and requires no additional operation.

Algorithm 12: Coefficient wise shift and add multiplier [30].
Input: a(i) (a 13-bit number) and s(i) (a 3-bit number with 0≤ sj ≤ 5)
Output: The product of a(i) ·s(j) modulo q = 213

1 n0← 0
2 n1← ai

3 n2← ai≪ 1
4 n3← ai + (ai≪ 1)
5 n4← ai≪ 2
6 n5← ai + (ai≪ 2)
7 return nk, where k = sj

The overall cost of the multiplier for SABER depends on the computation of the
following matrix, where a, s, and r show the coefficients of public, secret, and resultant
polynomials. Each row of matrix a contains 256 13-bit polynomial coefficients. Each row
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of the matrix s contains 256 4-bit polynomial coefficients. Therefore, 768 coefficients
are in three rows of a matrix a and a matrix s.a(0,0) a(0,1) . . . a(0,255)

a(1,0) a(1,1) . . . a(1,255)
a(2,0) a(2,1) . . . a(2,255)

 ·

s0
s1
s2

=

r0
r1
r2

 (12)

In Fig. 18(a), a serial multiplier is implemented using an SBM architecture to
compute Eq. 12 for coefficient multiplications of SABER. The serial architecture of
the SBM multiplier is illustrated in Fig. 20 where 256 MAC units are employed to
implement the matrix of Eq. 12 for coefficient multiplications. Moreover, two buffers
(sbuff and abuff) load the corresponding secret and public polynomial coefficients
from the external data memory for multiplication. An additional buffer (i.e., accbuff)
accumulates the multiplication result. Furthermore, each MAC unit performs coefficient
multiplication using Algorithm 12. The multiplication starts with loading 256 secret
polynomial coefficients from the first row of Eq. 12 into the corresponding buffer. Then,
256 public polynomial coefficients will be loaded into the corresponding buffer from the
first row of Eq. 12. After that, the multiplication will be computed, and the result will
be stored in the accumulator buffer (i.e., accbuff). This process repeats twice for the
second and third rows multiplication of Eq. 12. Note 256 MAC units are running in
parallel in this iterative approach. Each MAC unit takes one clock cycle for singular
13-bit and 4-bit polynomial coefficient multiplication. Thus, the architecture of Fig. 20
takes 768 clock cycles to implement the SABER matrix multiplication of Eq. 12.

Figure 20: Serial SBM multiplier architecture for SABER coefficients multiplication [86].

Based on the serial SBM multiplier of Fig. 20, a fully parallel SBM multiplier is
proposed and the block diagram is shown in Fig. 21, which is utilized for SABER
coefficient multiplications in Fig. 18(b).

As shown in Fig. 21, the fully parallelized polynomial multiplication design includes
two long polynomial buffers (LPPB and LSPB) and three copies of a schoolbook
multiplier, that is, SBM1, SBM2, and SBM3. The length of LPPB and LSPB is
proportional to the size of the matrix a and matrix s, respectively. Recalling again that
each row of matrix a contains 256 13-bit public polynomial coefficients and each row of
the matrix s contains 256 4-bit secret polynomial coefficients. Therefore, matrix a and
s contain 768 coefficients in three rows (256 in one row). Then, the length of LPPB is
9984 bits (768×13) and the length of LSPB is 3072 bits (768×4). Multiplication starts
with loading 768 polynomial coefficients into LPPB and LSPB buffers.

When loading all the 768 polynomial coefficients into LPPB and LSPB buffers is
finished, the corresponding 256 public and secret polynomial coefficients are forwarded
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Figure 21: Parallel SBM multiplier architecture for SABER coefficients multiplication.

to multipliers SBM1, SBM2, and SBM3. The design of the SBM1 multiplier is shown
in Fig. 21; it contains three buffers (i.e., pbuff1, sbuff1, and accbuff1) and 256 MAC
units. The pbuff1 and sbuff1 contain 256 coefficients of the first row of the matrix
a and matrix s from Eq. 12 for multiplication. The multiplication computation takes
256 clock cycles having 256 MAC units. Each MAC unit takes two inputs, the size
of the first input is 13-bit (public polynomial coefficient), and the size of the second
input is 4-bit (secret polynomial coefficient), resulting in a 13-bit polynomial as output,
as shown in Fig. 21. A 13-bit output polynomial from each MAC relies on the 4-bit
secret polynomial. Two bits from the LSB side of a secret polynomial decide between
shifted 13-bit public polynomial coefficients (a, 2a, 3a, 4a) using a multiplexer M1.
The next (third) bit from the LSB side is a sign bit. The last bit of a secret polynomial
coefficient determines the modular addition or subtraction operation to generate a
13-bit multiplication result. Finally, accbuff1 accumulates the multiplication results for
the SBM1 multiplier.

Similarly, for SBM2 and SBM3 multipliers, the identical strategy of the SBM1
multiplier is utilized, as shown in Fig. 21. But, in the SBM2 multiplier, pbuff2 and
sbuff2 keep the public and secret polynomial coefficients of the second row of the
matrix a and matrix s of Eq. 12. Similarly, pbuff3 and sbuff3 hold the public and secret
polynomial coefficients from the third row of matrix a and matrix s of Eq. 12. It is
essential to note that an additional buffer is also required to accumulate multiplication
results from three copies of the used SBM multipliers. Therefore, Fig. 21 shows that an
additional ‘raccbuff’ buffer accumulates the multiplication results from SBM1, SBM2,
and SBM3 before writing back on the employed data memory.

In a nutshell, the computational cost of the serial and parallel SBM multipliers of
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Fig. 20 and Fig. 21 is 768 and 256 clock cycles, respectively. In Fig. 20, 256 MAC
units have been used and these MACs operated iteratively (or serially) to compute the
polynomial multiplications of Eq. 12 in 768 clock cycles. The identical strategy is also
utilized in schoolbook multipliers of [30, 34, 36] for SABER polynomial coefficients. On
the other hand, the parallel SBM multiplier of Fig. 21 utilizes 768 MAC units (running
all in parallel) and takes 256 clock cycles to compute the polynomial multiplications of
Eq. 12. Despite the computational cost of the coefficients multiplication, the use of a
long buffer (i.e., LPPB and LPSB) approach is beneficial to avoid frequent memory
access for read/write operations in Fig. 21 because the SABER architecture deals with
256-bit data bus instead of the typical 64-bit size found in the literature (and in Fig. 20).
The total clock cycle cost of loading public and secret polynomials from data memory
is 156 and 48 for the serial SBM design of Fig. 20. The fully-parallelized architecture of
Fig. 21 reduces these costs to 39 and 12 cycles. Apart from the computation cost, the
area utilization of the multiplier of Fig. 21 is 3 times the area consumed by the SBM
multiplier of Fig. 20.

Other SABER building blocks. The UnPack, AddPack, AddRound, BS2POLVECp,
CopyWords, CMOV, and Verify blocks are implemented to deal with the corresponding
64-bit and 256-bit SABER architectures of figures 20 and 21. The objective of the
UnPack block in SABER is to transform a byte string into a bit string. The AddPack
block performs coefficient-wise addition of a constant with a generated message, which
is subsequently packed into a byte string. Similarly, the AddRound block executes
coefficient-wise addition of a constant with coefficient-wise rounding. The BS2POLVECp
block transforms the byte string into a polynomial vector. CopyWords block in SABER
is incorporated in figures 20 and 21 to perform matrix transpose by copying rows in
columns and vice versa. The Verify block in the SABER compares two-byte strings of
the same length. The output of the Verify block enables the CMOV block to either copy
the decrypted session key or a pseudo-random string at a specified memory location.

4.2 Implementation Results
Table 6 provides the implementation results on a 65nm commercial technology for the
baseline and optimized architectures. These results are obtained after logic synthesis
using Cadence Genus. Column one of Table 6 shows the baseline and optimized designs
constructed from variants of Fig. 18. The area information is provided in columns two
and three. Similarly, the timing information is presented in columns four and five. From
columns six to eleven, power information is provided.

Area and Power Evaluations. The serial SABER architectures of Fig. 18(a)
concurrently using compiled memories in a “smart synthesis” fashion with logic sharing
to several SABER building blocks and pipelining allows maximizing the clock frequency.
Column five of Table 6 shows that this approach enables obtaining a clock frequency of
up to 1GHz on 65nm process technology with area (column two) and power (columns
six to eleven) overheads. Optimizing from the baseline (DP_1(1024×64)) to the
PIP_DP architectures revealed that the memory is the primary bottleneck in the
SABER implementation. For example, in the case of the baseline design, the total
dynamic power consumption of the utilized memory is 44%, while the combinational
logic accounts for only 19%. Moreover, an increase in the number of memory instances
increases the power consumption of the designs, as noticed in the last column of Table 6
for the PIP_DP_4(1024×16) architecture where four memory instances account for
72% of the total dynamic power and the logic consumes only 10%. Therefore, one
approach to overcoming this bottleneck involves using faster memory instances, as
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demonstrated by the PIP_SP_4(256×64) architecture, where the combinational logic
and the memory account for 23% and 27% of the dynamic power consumption of the
SABER architecture. Despite the timing and power results, column two of Table 6
shows that the increase in memory instances also increases the area.

Similarly, for parallel SABER architectures of Fig. 18(b) where four memory instances
are running in parallel, the PIP_SP_4(256 × 64) and SS_Parallel_SP_4(256 × 64)
designs obtain 1GHz clock frequency, as shown in column five of Table 6. On the
other hand, DS_Parallel_SP_4(256 × 64) design can operate on a maximum clock
frequency of 936MHz. In addition, implementing SS_Parallel and DS_Parallel designs
reveals that the logic consumes more dynamic power than the four memory instances
running all in parallel; see columns nine and eleven of Table 6. The potential reasons
include the 256-bit data path where all SABER building blocks operate on 256-bit words
instead of the SHA3-256/512 and SAHKE wrapper. Another reason is implementing
the SABER building blocks using several buffers as utilized in Fig. 19(b) for KECCAK
hash computations and Fig. 21 for fully parallelized SBM multiplier. The use of several
buffers in SABER building blocks causes to increase in the dynamic power consumption
of the sequential logic instead of the combinational, as can see that the SS_Parallel
design consumes 76% (for sequential logic or flip-flops), 17% (for combinational logic),
and 7% (for four instances of RegFiles running all in parallel) of the total dynamic
power consumption. On the other hand, the DS_Parallel design consumes 53% (for
sequential logic or flip-flops), 41% (for combinational logic), and 5% (for four instances
of RegFiles running all in parallel) of the total dynamic power consumption.

Critical path analysis. On 65nm process technology, the critical paths of the
designs of Fig. 18(a) and Fig. 18(b) are presented in Fig. 22. It shows that the memories
containing longer access time to read/write one operation result in longer critical paths.
Moreover, as seen from DP_1 to PIP_DP designs in Fig. 22, the memory is the real
bottleneck, while the use of faster SRAM-based RegFiles results in a shorter critical
path, as can be seen for last three designs. In other words, as shown in Fig. 22, the
critical path of the baseline architecture (i.e., DP_1) depends on the memory and some
amount of combinational logic (to a lesser degree). However, this is not the case for
the last three optimized architectures (PIP_SP, SS_Parallel, and DS_Parallel), where
the critical path is mostly combinational logic. Also, the critical path of the PIP_SP
design contains the setup time of the destination flip-flop, as this design contains a
pipeline register between the memories and a binomial sampler.
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Figure 22: Critical path evaluations of serial and parallel SABER architectures.
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As observed that the critical paths of the last two designs in Fig. 22 are a bit higher
than the critical path of the most-optimized PIP_SP design. One reason is the pipelining
in PIP_SP design; another is 64-bit words in the data path, while SS_Parallel and
DS_Parallel designs operate on 256-bit words. One more thing is observed that using a
single-sponge function (as used in SS_Parallel design) results in a shorter critical path
than the DS_Parallel design where two sponge functions are employed in the wrapper
of SHA3-256/512 and SHAKE-128 functions. As the critical path of the SS_Parallel
and DP_Parallel designs is a bit higher than the PIP_SP design, the SS_Parallel
and DP_Parallel designs are beneficial to reduce the clock cycles requirement, which
will be discussed next. Overall, the critical path evaluations of SABER designs with
different characteristics imply that the last three optimized architectures are saturating
the memory bandwidth thanks to the optimization strategies at the architecture and
circuit levels.

Clock cycle count. The clock cycles have been calculated from end to end of
each operation (KEYGEN, ENCAPS, and DECAPS). Moreover, the computation time
needed to perform one cryptographic operation determines the latency, measured in µs,
and is calculated using Eq. 13. Therefore, the total clock cycles and latency to compute
KEYGEN, ENCAPS, and DECAPS operations of the baseline and optimized designs are
provided in Table 7. Column one provides the implemented design, and columns two to
four provide the total clock cycles for KEYGEN, ENCAPS, and DECAPS operations.
Finally, the last three columns show the latency values.

Latency (µs) = Total Clock Cycles

Clock Frequency (MHz) (13)

Table 7: Total clock cycles and latency for CCA-secure KEM SABER on a 65nm commercial
technology.

Designs Total Clock Cycles Latency (µs)
KEYGEN ENCAPS DECAPS KEYGEN ENCAPS DECAPS

DP_1 5644 6990 8664 11.2 13.9 17.3
DP_2 5644 6990 8664 9.6 12.0 14.8
DP_4 5644 6990 8664 9.2 11.4 14.2
DP_8 5644 6990 8664 9.1 11.3 14.0
PIP_DP 5741 7087 8761 8.6 10.6 13.1
PIP_SP 7154 7136 9359 7.1 7.1 9.3
SS_Parallel 4166 4917 5249 4.1 4.9 5.2
DS_Parallel 3836 4554 4908 4.0 4.8 5.2

For the first six designs, Table 7 shows that the increase in both clock cycles and
clock frequency (values given in column five of Table 6) results in a decrease in the
computation time, i.e., latency. On the other hand, for the last two designs, Table 7
shows a decrease in both clock cycles and clock frequency (values provided in column
five of Table 6), resulting in a decrease in the computation time.

Apart from the total clock cycle information in Table 7, the clock cycle dis-
tribution amongst the building blocks of the SABER PQC algorithm is further
shown in Fig. 23. Note, this information is only provided for the last three opti-
mized designs: (i) PIP_SP_4(256 × 64), (ii) SS_Parallel_SP_4(256 × 64), and (iii)
DS_Parallel_SP_4(256 × 64). Therefore, from left to right, the first row with three
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panels in Fig. 23 specifies the KEYGEN, ENCAPS, and DECAPS operations for
a serial SABER architecture, i.e., PIP_SP_4(256 × 64). Similarly, the second row
includes three panels for the same three operations on a parallel SABER architec-
ture – SS_Parallel_SP_4(256 × 64) – with a single sponge in its KECCAK block.
DS_Parallel_SP_4(256×64) design in the third row of Fig. 23 has the double-sponge
functions. The total clock cycles from the last three rows of Table 7 are presented
again in the bottom panel of Fig. 23. In addition, in Fig. 23, hash shows the variants of
SHA3 (256/512) and SHAKE-128.
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Figure 23: Clock cycle distribution for PIP_SP, SS_Parallel, and DS_Parallel designs.

As expected, Fig. 23 shows a decrease in clock cycles for KEYGEN, ENCAPS, and
DECAPS operations when moving from a serial (PIP_SP) to a parallel design with
a single-sponge function (SP_Parallel) – see blue and red bars. Similarly, there is
a decrease in clock cycles for hash operation when comparing two parallel SABER
designs (SP_Parallel and DS_Parallel) with single- and double-sponge functions (see
red and green bars). The last panel in Fig. 23 highlights the total cycle count for
each operation on the last three optimized architectures. The average number of
clock cycles required to execute KEYGEN, ENCAPS, and DECAPS operations using an
SS_Parallel accelerator is 1.65× lower than the serial SABER architectures of [34, 36].
The DS_Parallel accelerator design further reduces the clock cycle requirement by
1.07× compared to SS_Parallel architecture.

Until now, the implementation results are presented on a commercial 65nm process
technology. Next, the last two optimized (SS_Parallel, and DS_Parallel) parallel designs
have also been evaluated on a modern 28nm process technology to investigate the clock
frequency, latency, area, power, and energy parameters. After the logic synthesis, the
implementation results are given in Table 8. Column one provides the implementation
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Table 8: Results of the optimized SABER accelerators on 28nm technology.

Implementation details SS_Parallel DS_Parallel
Maximum Frequency (MHz) 2500 2500
Latency (µs) 1.66/1.96/2.09 1.53/1.82/1.96
Utilized Area (mm2) 0.251 0.255
Power (Lkg/Dyn) (mW ) 10.96/556.25 11.49/597.05
Energy (µJ) 0.923/1.090/1.162 0.913/1.086/1.170

details regarding clock frequency, latency, area, power, and energy. Columns two and
three show the corresponding values for SS_Parallel and DS_Parallel designs. By
separating with a ‘/’ character, the latency, power, and energy values are given for
KEYGEN, ENCAPS, and DECAPS operations of SABER. Similarly, Lkg and Dyn are the
leakage and dynamic power consumption. The Vivado IDE tool is used for simulations,
while Cadence Genus is used for logic synthesis. In addition, the area and power values
are reported directly from the synthesis tool; latency values are calculated using Eq. 13;
energy values are calculated using Eq. 14.

Energy (µJ) =Dynamic Power (mW )×Latency (µs) (14)

Table 8 shows that the SP_Parallel and DP_Parallel designs can operate on
2500MHz clock frequency. DS_Parallel design reduces the computation time for
the SABER’s KEYGEN, ENCAPS, and DECAPS operations compared to SS_Parallel
design. The reason is the single-sponge function in SS_Parallel design while double-
sponge functions in DS_Paralel design, comparatively, the double-sponge functions
minimize the clock cycle. Although DS_Parallel design reduces the computation time,
on the other hand, it increases by +4.63% and +6.84% for leakage and dynamic power,
and +1.57% increase in area. The max frequency is obtained by pushing the timing
constraint until the slack is close to zero. Apart from the area and power increase,
the DL_Parallel design has higher merit as it consumes nearly the same energy as the
SS_Parallel design.

In summary, a significant improvement in clock cycles, latency, area, power, and
energy when moving from a serialized design to parallel architectures reveals that the
realized approaches (of Fig. 18, Fig. 19 and Fig. 21) can be utilized in other PQC
algorithms for optimizations.

4.3 Comparison and Discussion
The previous section describes the DSE process, where one baseline and seven optimized
SABER designs have been constructed. Therefore, comparing all the baseline and
optimized designs is challenging with existing SABER architectures; however, the most
optimized (three) designs are selected to compare to state-of-the-art architectures:
PIP_SP, SS_Parallel, and DS_Parallel. Table 9 shows the comparison after logic
synthesis to existing FPGA and ASIC SABER implementations. Also, the NIST-selected
CRYSTALS-Kyber PQC KEM to be standardized in the near future is compared. Column
one provides the reference design, while the implementation platform (FPGA/ASIC) is
shown in column two. The computational cost in latency for KEYGEN, ENCAPS, and
DECAPS operations is presented in column three. In addition, the latency values are
separated by the character ‘/’. The operating frequency in MHz is reported in column
four. Finally, the last column shows the area (LUT/FF for FPGA and ASIC in mm2).
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A symbol ‘–’ is placed in Table 9 where the relevant information is not reported in the
reference designs.

Table 9: ASIC and FPGA comparison to existing PQC KEM SABER and CRYSTALS-Kyber
hardware accelerators after logic synthesis. All implementation results are for security equivalent
to AES-192.

Ref. # FPGA/ASIC Latency (µs) Freq. Area
(MHz) LUT/FF (or) mm2

SABER Implementations
[30] Ultrascale+ 21.8/26.5/32.1 250 23.6K/9.8K
[31] 40nm 2.66/3.64/4.25 400 0.38
[84] Artix-7 –/373.1/422.1 125 6.7K/7.3K
[86] Artix-7 3.2K/4.1K/3.8K 125 7.4K/7.3K
[88] Ultrascale+ –/60/65 322 –/–
CRYSTALS-Kyber Accelerators (Kyber-768)
[26] 28nm 4.5/5.6/6.9 2000 0.263
[117] Artix-7 209 115 16K/6K
[118] Artix-7 499.8 (ENCAPS) 155 97K/153K
[118] Artix-7 658.7 (DECAPS) 155 110K/167K
[119] Virtex-7 39 (KEYGEN) 217 22K/12K
[119] Virtex-7 57.5 (ENC+DEC) 226 29K/22K
[120] 65nm 35/50/70 200 372KGE
PIP_SP 65nm 7.1/7.1/9.3 1000 0.314
SS_Parallel 65nm 4.1/4.9/5.2 1002 0.944
DS_Parallel 65nm 4.0/4.8/5.2 936 1.026
SS_Parallel 40nm 2.4/2.9/3.0 1694 0.846
DS_Parallel 40nm 3.4/4.1/4.4 1095 0.767
SS_Parallel 28nm 1.6/1.9/2.0 2500 0.251
DS_Parallel 28nm 1.5/1.8/1.9 2500 0.255

ENC and DEC: represents encryption and decryption operations, ENCAPS and DECAPS:
shows encapsulation and decapsulation operations, GE: specifies the gate equivalents, Ref [117]:
reports the latency for ENCAPS + DECAPS and KEYGEN can be executed offline, Ref [118]:
instead of FFs, slices are reported as area, Ref [119]: the reported results are for Kyber-1024
(security equivalent to AES-256), Ref [120]: the latency values are calculated using the ratio
of clock cycles (mentioned in the reference paper) with frequency 200MHz.

Comparison to SABER hardware accelerators. As shown in Table 9, the FPGA
implementations are reported in [30, 84, 86, 88] while an ASIC SABER implementation
after logic synthesis is described in [31]. As mentioned before, the objective of the DSE
process was to improve the operating frequency of the lattice-based PQC hardware
accelerators specific to the ASIC platform. As can see in column four of Table 9, the
highest operating frequency on FPGA devices is 322MHz which is obtained in [88];
on the other hand, the frequency obtained for ASIC on 40nm technology is 400MHz
and is achieved in [31]; comparatively, on different ASIC platforms (65, 40, 28nm),
the operating frequency reported in column four of Table 9 for PIP_SP, SS_Parallel
and DS_Parallel designs is very high. More precisely, on an identical 28nm process
technology, the implemented SS_Parallel and DS_Parallel designs are 4.23× and 2.73×
faster than the ASIC implementation of [31]. Similarly, the implemented SS_Parallel
and DS_Parallel designs are 7.76× faster than the fastest FPGA implementation of [88].

66



Instead of the modern 40 and 28nm process technologies, more insight comparisons are
given below on 65nm technology, highlighting the significance of the DSE process.

Let us consider only the SABER FPGA designs for comparison, but before comparing
results, it is essential to highlight that a realistic comparison to FPGA devices is difficult
as the implementation platforms differ. In terms of computation time or latency (shown
in column three of Table 9), the most efficient implementation of SABER on FPGA
is described in [30], where the design takes 5453, 6618 and 8034 clock cycles for one
KEYGEN, ENCAPS, and DECAPS operations computation. Their design utilizes a
co-processor architecture style where all building blocks of SABER operate serially. The
PIP_SP architecture uses the same serial strategy for execution; therefore, the PIP_SP
accelerator takes 7154, 7136, and 9359 clock cycles to compute one KEYGEN, ENCAPS,
and DECAPS operation. Indeed, the PIP_SP design utilizes more clock cycles; on the
other hand, the PIP_SP accelerator on 65nm process technology requires 3.07× (for
KEYGEN), 3.73× (for ENCAPS), and 3.45× (for DECAPS) lower latency than [30].
This is due to the higher operating frequency of 1GHz in PIP_SP, which is obtained
by employing a pipeline register in the data path of the SABER crypto core, which
reduces the critical path. Another reason is using four smaller distributed single-port
RegFile memories in PIP_SP accelerator architecture while a singular dual-port BRAM
of size 64KB is used in [30]. In PIP_SP accelerator architecture, the same memory size
is utilized. The area comparison is hard as the implementation platforms are different.

In [84], a lightweight hardware implementation of SABER uses a masking technique
to protect against side-channel attacks. Initially, a lightweight hardware architecture is
designed as a baseline, and after that, countermeasures are incorporated for side-channel
attack protection. The authors claimed to have the first secure hardware-protected
implementation of SABER, outperforming previously reported secure software and
software/hardware co-design implementations. The area and latency results of the
unprotected SABER implementation of [84] are shown in Table 9, where the utilized
LUT and FF are 6713 and 7363. In addition, the utilized slices and DSP blocks (not
shown in Table 9) are 2631 and 32, respectively. If considering the protected SABER
implementation, the values for LUT, FF, slices, and DSP blocks are 19299, 21977, 7036,
and 64. The unprotected and protected SABER designs do not utilize the BRAMs and
operate on identical 125MHz frequency. Despite the area, the computational cost
(latency) of the unprotected SABER designs is 373.1µs (for ENCAPS) and 422.1µs (for
DECAPS). Similarly, the computational cost of the protected SABER designs is 576.0µs
(for DECAPS). On modern Artix-7 FPGA device, adding side-channel countermeasures
to unprotected SABER design of [84] results in a 2.87× (ratio of 19299 with 6713)
increase in the number of LUT and a 1.4× increase in latency. When comparing
the unprotected SABER design of [84] with PIP_SP architecture on 65nm process
technology, the PIP_SP design takes 52.54 and 45.38 times lower latency for ENCAPS
and DECAPS operations. The cause is the higher operating frequency of 1GHz for
PIP_SP, while in the reference design, the obtained circuit frequency is 125MHz on
Artix-7 FPGA. Also, this comparison shows that the PIP_SP design is 8× faster (in
operating frequency) compared to unprotected and protected SABER implementations
of [84].

Similar to other SABER designs, in [86], a hardware-software co-design approach is
utilized to implement SABER design. The authors have operated SABER operations on
an ARM core, and only the most computationally intensive polynomial multiplication
operation is tasked to the coprocessor, resulting in a compact design. They utilized
a distributed computing concept at the micro-architectural level, where different algo-

67



rithmic optimizations have been performed, resulting in a speedup of approximately
six times compared to optimized-only software implementation with a minor increase
in hardware cost. The Zynq-7000 FPGA SoC is used for hardware deployments. On
65nm technology, for KEYGEN, ENCAPS, and DECAPS operations, the PIP_SP
architecture utilizes 450.7×, 577.4×, and 408.6× lower latency, when compared to [86].
Moreover, like [84], the PIP_SP architecture is 8× faster in clock frequency. The area
comparison is challenging as the implementation platform in this study is ASIC, while
FPGA implementation is provided in the reference design.

Another co-processor-based SABER design is described in [88], where the imple-
mentation and benchmarking of three lattice-based KEM algorithms, including SABER,
have been presented. Compared to pure-software-based implementations, the SABER
co-processor on the Ultrascale+ platform results in 28× (for ENCAPS) and 20× (for
DECAPS) speed-ups. Therefore, compared to [88], the PIP_SP architecture on 65nm
technology results in a 3.10× speed-up in clock frequency. As for as the latency is
concerned for comparison, the PIP_SP design is 8.45× and 6.98× faster than [88].
The optimized latency in the PIP_SP accelerator is achieved due to pipelining and by
employing variants of four smaller SRAM-based RegFile memory instances.

Now let us see the ASIC SABER implementation of [31]. It describes an energy-
efficient configurable crypto-processor architecture supporting multiple security levels
of SABER. It incorporates an 8-level Karatsuba multiplier to perform coefficient-wise
multiplications. Moreover, an optimized hardware-efficient Karatsuba scheduling strategy
is implemented for a pre-/post-processing structure of the Karatsuba, which reduces
the area overheads. The SABER design of [31] takes 1066, 1456, and 1701 clock cycles
for KEYGEN, ENCAPS, and DECAPS operations. On TSMC 40nm process technology,
the utilized area of the SABER design of [31] is 0.38mm2 (shown in the last column
of Table 9). Comparatively, on 65, 40, and 28nm process technologies, the PIP_SP,
SS_Parallel, and DS_Parallel designs are faster than [31] in operating frequency because
in the serial PIP_SP architecture pipelining reduces the critical path which eventually
improves the operating frequency. The SS_parallel and DS_Parallel designs utilized a
wider 256-bit data path strategy, reducing the clock cycles. As shown in column three
of Table 9, the serial and parallel (PIP_SP, SS_Parallel, and DS_Parallel) designs on
65nm technology take higher computation time for KEYGEN, ENCAPS, and DECAPS
operations because the design of [31] uses two-sponge functions in the KECCAK core to
reduce the clock cycles and another reason is the use of several smaller memories specific
to SABER operations. On the other hand, the SS_Parallel and DS_Parallel designs on
identical 40nm and even on modern 28nm technologies take much lower computation
time than [31]. The reason is four smaller memories running all in parallel allows to deal
with a wider 256-bit data path in SS_Parallel and DS_Parallel designs, whereas in [31],
a 64-bit data path is implemented even with several smaller memories. Hence, using
four smaller memories running all in parallel in SS_Parallel and DS_Parallel design is
more efficient than [31] as this strategy reduces the clock cycles, improves the operating
frequency, and the ratio of clock cycles with the operating frequency allows to obtain
lower computation time.

Comparison to CRYSTALS-Kyber hardware accelerators. The point-to-point
comparison is challenging as the PQC schemes are different. Moreover, the area
comparison to FPGA devices is difficult as the implementation platforms differ. Hence,
this comparison shows the significance of several optimization techniques utilized
in executing the DSE process for optimizing the performance of the SABER PQC
algorithm. In addition, it highlights the importance of the techniques used in SABER
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for optimizing other lattice-based NIST-selected PQC algorithms such as CRYSTALS-
Kyber, CRYSTALS-Dilithium, etc. Note that these optimization techniques are not
only specific to lattice-based PQC algorithms but can be used for other cryptographic
applications for different purposes. For instance, one-time data loading from memories
and a wider data path of 256-bit strategies are beneficial to reduce clock cycles. Below,
the comparison to some CRYSTALS-Kyber hardware accelerators is compared to the
last three optimized SABER designs.

As for as the ASIC implementations are concerned for comparison, in [26], a unified
architecture (named KaLi) is described to perform KEYGEN, ENCAPS, DECAPS,
SIGNGEN (signature-generation), and SIGNVRF (signature-verify) for all three security
levels of CRYSTALS-Kyber, and CRYSTALS-Dilithium PQC algorithms. On modern
28nm ASIC technology, KaLi can operate at a maximum of 2GHz clock frequency.
Comparatively, on identical 28nm ASIC technology, the SS_Parallel and DS_Parallel
designs can operate on 2.5GHz. As shown in column three of Table 9, the PIP_SP
design on 65nm technology takes more computation time than the design of [26] on
28nm technology. On the other hand, the parallel SABER designs take less computation
time than the KaLi design of [26]. The area reported for KaLi is higher than this
work because KaLi utilizes unified accelerator architecture for CRYSTALS-Kyber and
CRYSTALS-Dilithium algorithms. On 65nm process technology, an ASIC implementa-
tion of CRYSTALS-Kyber is described in [120] where a maximum 200MHz operating
frequency is achieved. On the same 65nm technology, the PIP_SP, SS_Parallel, and
DS_Parallel designs can operate on higher 1GHz, 1GHz, and 936MHz clock frequen-
cies. As can be observed from column three of Table 9, the optimized SABER designs
(in this study) take much less time in latency than CRYSTALS-Kyber implementation
of [120]. Similarly, in column five of Table 9, the area for reference design is given
in gate equivalents (which is 372K); however, the gate equivalents for implemented
SABER optimized PIP_SP, SS_Parallel, and DS_Parallel designs is 64.2K, 199.2K,
and 237.7K. These values are much lower than the 372K. Hence, the parallel designs
of this study are more efficient in operating frequency and latency compared to ASIC
accelerators of CRYSTALS-Kyber of [26, 120].

The FPGA-implemented designs of CRYSTALS-Kyber are reported in [117, 118, 119].
The designs of [117] and [118] generate the KEYGEN offline while the remaining two
operations, i.e., ENCAPS, & DECAPS, are executed on an FPGA device. Moreover,
the implementation of these two designs is different than each other. For example, in
[117], a unified design is presented for ENCAPS and DECAPS operations. The design
of [118] includes two implementations, one for each ENCAPS and DECAPS; these two
designs operate on identical 155MHz clock frequency (see column four of Table 9),
but the hardware utilization costs are different (97K LUTs for ENCAPS and 110K LUTs
for DECAPS – see column five of Table 9). The design of [119] is different than the
accelerators of [117, 118], as it implements all three operations (KEYGEN, ENC, and
DEC) on hardware; the KEYGEN design is dedicated while a unified implementation
is presented for ENC (encryption) and DEC (decryption) operations. Due to different
platforms, the latency and area parameters are difficult to compare with the ASIC-
implemented designs of this study. However, it can be seen from column four of
Table 9 that the optimized SABER implementations of this study are faster in clock
frequency as compared to recent CRYSTALS-Kyber implementations. The reasons are
the smaller memories running in parallel and the larger data path size of 256-bit (for
parallel designs). Apart from these techniques, pipelining, shared shift buffers across
several building blocks, and one-time data loading from the memories are the additional
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approaches that help to obtain higher circuit frequency and reduce clock cycles. The
studied approaches in the DSE process are not specific to SABER and PQC algorithms;
these can be utilized in other related applications to optimize the operating frequency.

In summary, the premise of the DSE process was to optimize the operating frequency
of the PQC algorithms when demonstrated on the ASIC platform. Consequently, after
applying several optimization techniques, column four of Table 9 shows that the serial
and parallel designs (of this study) are faster in operating frequency compared to
state-of-the-art PQC accelerators with an additional area overhead.
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5 High-Speed SABER Chip Design
This chapter concentrates on the silicon implementation of SABER designs from the
ones studied in the Chapter 4. Hence, an optimized PIP_SP serial design is considered
for fabrication. Initially, the chapter describes the chip architecture, including the top
wrapper, serial input/output interface, and SABER crypto core, along with the building
blocks in Section 5.1. Section 5.2 details the measurement results, including the chip
layouts, experimental setup, and the range of operations the fabricated chip supports.
In Section 5.3, the performance of the fabricated SABER chip is compared to existing
SABER silicon-proven implementations.

5.1 Chip Architecture
Fig. 24 shows the top-level architecture of the fabricated SABER chip. It includes a
wrapper, a serial-in/out interface, and the SABER crypto core. The wrapper acts as
a controller to operate the required cryptographic operations. As the name implies,
serial-in/out bears inputs serially from outside to the chip and also results in a serialized
output. The SABER crypto core is responsible for the computations of corresponding
operations such as KEYGEN, ENCAPS, and DECAPS. The upcoming sections provide
the architectural details of the wrapper, serial-in/out interface, and SABER crypto core.

Figure 24: Top-level architecture of the SABER chip, where gray portion specifies the wrapper.

5.1.1 Wrapper
Fig. 24 illustrates that the chip’s interface comprises 16 I/O pins, each capable of
handling a single bit. The input pins consist of clk1, clk2, rst, start, we, cont,
addr, addr_ready, din, lad1, lad2, crypto_op_1, crypto_op_2, and crypto_op_3,
whereas the output pins are dout and done.

As the objective of this study is to operate the SABER crypto core at a high frequency,
it becomes difficult to communicate with the outside environment at a high frequency.
Therefore, two different clocks (named clk1 and clk2) are utilized. The clk1 pin drives
a slower clock that feeds the serial I/O interface of the chip. Similarly, clk2 drives
the faster clock connected to the inner SABER crypto core. The names of various
other I/O pins are intuitive: rst is a reset signal, start is a trigger signal for starting
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cryptographic operations, we is a write-enable, din is data in, dout is data out, addr
specifies read/write address. The pins addr_ready and done inform when operations
are finalized, either loading an address or an entire crypto operation.

The objective of using a cont pin is to measure the chip’s power consumption when
the KEYGEN, ENCAPS, and DECAPS operations are executed continuously (i.e., in an
infinite loop). Doing so will ensure that the power measurement is not affected by I/O
limitations.

The combined use of lad1 and lad2 allows to drive four possible combinations: (i)
2’b00 means “no-operation", (ii) 2’b01 means load read/write address on the chip using
addr, (iii) 2’b10 means load input data vector from outside on the chip using din,
and (iv) 2’b11 means reading data back from the chip on dout. The crypto_op_1,
crypto_op_2, and crypto_op_3 signals are used to select the crypto operation, either
KEYGEN, ENCAPS, or DECAPS.

The wrapper of the chip is an FSM-based dedicated controller. It is responsible to
execute the KEYGEN, ENCAPS, and DECAPS operations by properly orchestrating
the sequential use of the SABER blocks. The chip remains in an IDLE mode until the
start signal is asserted. Next, based on the values of crypto_op_1, crypto_op_2, and
crypto_op_3, the FSM begins to execute the corresponding sequence of instructions
for computation of KEYGEN, ENCAPS, and DECAPS operations. When the required
KEM operation completes its execution, the FSM returns the chip into an IDLE mode
(if cont is 0, otherwise the operation is continuously executed non-stop when cont is 1).

5.1.2 Serial-in/out interface
Fig. 25 depicts the architecture of the serial-in/out interface, which bridges the external
environment and the SABER crypto core. This interface helps data loading via serial
communication and serves two purposes: loading user-defined inputs din and addr
& chip debugging. The serial interface can access the entire memory addressing
space (1024×64) to store or retrieve data from the memories. The incoming bits are
accumulated into vector lengths of 10 bits for read/write addresses and 64 bits for
read/write data to load user-defined inputs. Three shift registers are used: (i) one for
read/write address, (ii) one for data input, and (iii) one for data output, as shown
inside the highlighted circle in Fig. 25 to accumulate addr and read/write data bits. In
addition, an 8-bit count register counts up to 10 for loading read/write addresses and
up to 64 for read/write data. All these shift registers operate based on the values of
lad1 and lad2 signals.

Figure 25: Design for serial-in/out interface.
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The addr, din, and dout pins of the fabricated chip are linked to the corresponding
read/write address, data input, and data output shift registers, respectively. Recalling
again, the values on lad1 and lad2 are used to route the corresponding shift register
bits to the appropriate pins.

5.1.3 SABER crypto core
The SABER crypto core corresponds to the PIP_SP architecture and is capable of
computing KEYGEN, ENCAPS, and DECAPS operations. As shown in Fig. 26, it
consists of several blocks, i.e., a data memory, a routing network, a pipeline register,
a shared shift buffer, building blocks, and a dedicated controller. The corresponding
details of these blocks are given below.

Figure 26: SABER crypto core.

To implement the SABER as a hardware accelerator, the FPGA-based SABER
design of [30] utilizes a BRAM-based dual-port data memory of size 1024×64. In
the previous chapter, a DSE process was presented. It has been determined that the
smaller and distributed memories in an ASIC design are more beneficial as the smaller
memories require simpler address decoder units which are faster and lead to performance
improvements with area and power overheads. Therefore, as shown in Fig. 26, the
SABER crypto core utilizes four instances of 256× 4 size of a single-port SRAM-based
RegFile as a data memory to retain initial, intermediate, and final results during and
after the computations. The total size of the four memory instances is (256× 4) × 4
= 65Kbits.

The proposed SABER crypto core splits the memory address space into multi-
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ple blocks. However, each memory block requires different signals for write enable,
read/write address, and input/output data. Hence, a unified routing network is es-
sential for communication between the SABER building blocks and memory instances.
Therefore, the routing network of the SABER crypto core includes several multiplexers
that handle the corresponding memory instances during read and write operations.
In the DSE process, it has been described the use of smaller memories in serial and
parallel fashions. Note that the SABER crypto core routing network in fabricated chip
handles four memory instances sequentially. This means only one memory instance can
read/write at one time.

The hardware implementations of the building blocks of the PQC protocols require
several shift registers for different purposes, such as shift and accumulation. For example,
many SABER building blocks need shift registers with different lengths to acquire data
from many memory addresses and then accumulate into local registers/buffers for com-
putations. For instance, a 320-bit register is required in AddRound and BS2POLVECp,
while a 64 and 676-bit register is needed in AddPack and multiplier, respectively. Using
different buffers in different building blocks results in higher hardware resources and
consumes more power. Therefore, a better solution is to use a single shared buffer.
The difficulty is in determining an appropriate length for such a buffer. As SABER
requires polynomial multiplications over 256 13-bit coefficients, a serialized architecture
is more beneficial to load some partial coefficients for multiplication and then load the
subsequent coefficients. In the SABER crypto core, 52 13-bit polynomial coefficients are
loaded at first in a 676-bit buffer for multiplications. After that, the next coefficients
are loaded for multiplications, and so on, until the completion of 256 coefficients. Con-
sequently, a single 676-bit register is shared across AddRound, AddPack, BS2POLVECp,
and multiplier blocks in the SABER crypto core to save area without degrading the
performance of the crypto core.

The green portion in Fig. 26 highlights the SABER building blocks: (i) variants of
secure hash algorithms (i.e., SHA3-256, SHA3-512, and SHAKE-128); (ii) Unpack;
(iii) CopyWords; (iv) CMOV; (v) Verify; (vi) Binomial sampler, (vii) AddPack, (viii)
AddRound, (ix) Multiplier, and (x) BS2POLVECp. In Chapter 4, the serial and parallel
implementation of these SABER building blocks is already described. Recalling again,
PIP_SP architecture is fabricated on 65nm technology. Therefore, all the SABER
building blocks in the fabricated chip support serial implementation.

Despite the SABER building blocks, the crypto core has a dedicated controller.
Therefore, based on the instructions from the wrapper for the computation of KEYGEN,
ENCAPS, and DECAPS, the controller generates the corresponding control signals to
execute the SABER building blocks one at a time; this means that the fabricated chip
incorporates a serial architecture instead of the parallel design. Moreover, it controls the
use of the shared shift buffer and the routing network. As shown in Fig. 26, the binomial
sampler is connected through a pipeline register; this creates NOP (no-operation) or
execution bubbles. Hence, the controller also manages the synchronization between the
building blocks.

5.2 Measurement Results
A 65nm CMOS (Complimentary Metal Oxide Semiconductor) technology is used for
silicon demonstration of the proposed SABER architecture. The RTL code is written
in Verilog HDL. To generate the netlist, the top-level SABER design was synthesized
using Cadence Genus and a foundry-provided 65nm standard cell library. After that,
the generated netlist was loaded for physical implementation in Cadence Innovus. For

74



physical verification (DRC and LVS), Calibre was used. Later on, the GDSII file was
submitted to the foundry for fabrication. A total of one hundred chips were fabricated
and twenty-five were packaged in a Dual-In-Line-28 (DIP-28) form factor. It is important
to provide that the design implementation was completed in August 2021, the chip
underwent fabrication in the time frame from September–November, and fabricated
parts were delivered in December 2021. Finally, the testing and measurement results
were finished in February 2022.

The chip layouts and the experimental setup, including the leakage current measure-
ment, area, timing & power results, and an operational range of the chip, are described
in the following sections.

5.2.1 Chip Layouts and Experimental Setup
The chip layout is shown in Fig. 27(a), where the four memory instances are highlighted
around the corners across the core. All metals between M2 and M7 were used for signal
routing. M7 is also used for creating a power ring around the core. Moreover, the power
is distributed across the core using horizontal and vertical stripes in M8 and M9 (and
these stripes are visible in Fig. 27(a)). The die size is 960µm×960µm. The SABER
design barely fits in this size. The placement density of the core area is 93.4%, with the
remaining 6.6% occupied by decap and filler cells. This high density made the SABER
design very challenging for timing closure. Moreover, the I/O pins (seven on each side
of the chip) and power stripes routed across the entire chip, horizontally and vertically,
are visible. Similarly, a micrograph of an unpackaged chip taken by a microscope is
illustrated in Fig. 27(b). It is possible to recognize the same power routing stripes and
IOs as in the physical layout. Fig. 27(a) and Fig. 27(b) highlight pins of the chip’s
lower right corner for orientation.

(a) Physical layout of the SABER chip taken
from Cadence Innovus.

(b) Microscope view of an unpackaged die
where it is possible to identify the IOs (7 on
each side) and horizontal & vertical power

stripes on the top metal layers.

Figure 27: Physical layout and microscope view of the fabricated SABER chip.

The utilized testing setup to validate the chip is shown in Fig. 28. A printed circuit
board (PCB) was designed using KiCAD and fabricated to facilitate the test and enable
measurements. A DIP-28 socket is mounted on the PCB. Therefore, the packaged
chip is placed on the DIP-28 socket. Two power sources are connected to the PCB
through BNC connectors, where the core logic (1.2V) and IO cells (2.5V) are powered
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through the PCB. Small decoupling capacitors are manually mounted on the PCB for
both VDDs. The STM32F446RE [121] microcontroller is integrated with the PCB to
drive all the input signals except the faster clock (i.e., clk2). The microcontroller also
collects the outputs of the chip. To generate the fast clk2, a high-frequency generator
(shown between the two power sources in Fig. 28) is used. Note that the fabricated
SABER chip does not contain an internal clock generator.

Figure 28: Testing setup used to validate the fabricated SABER chip.

5.2.2 Leakage Current Measurement
The plot of a normal distribution of the average leakage current measurements of
the twenty-five packaged chips is shown in Fig. 29. Reminding that the leakage (or
state-off) current is the current that flows through a device even when the device is
not actively computing. The average leakage current is 0.2099mA and the standard
deviation is 0.0409. The measured data points are plotted as red circles over the
normal distribution (black line). The pre-silicon leakage current results (obtained from
Innovus) for three different corners, i.e., typical, worst, and best, are 0.164mA (on
1.2V), 0.450mA (on 1.08V) and 3.20mA (on 1.32V) and these values are relative to
temperatures of 25◦C, 125◦C and 0◦C, respectively. The blue vertical line in Fig. 29
shows a typical corner’s pre-silicon leakage current value. The measurement results
appear slightly more pessimistic than the simulated value predicted but within the
expected range. The best and the worst measured data points are also highlighted in
Fig. 29.

5.2.3 Area, Timing and Power Results
The identified ‘best case’ sample is placed on the PCB to identify the chip’s highest
possible operating frequency and power consumption. All the KEM operations of SABER
(i.e., KEYGEN, ENCAPS, and DECAPS) can be executed on 770, 715, and 840MHz at
1.2V supply voltage. The corresponding power values on identical operating conditions
for KEYGEN, ENCAPS, and DECAPS are 151, 158, and 157mW . These power values
are obtained using a high-precision measurement unit. Here, for the KEYGEN operation
of SABER, the obtained 151mW value is highlighted with a red portion in Fig. 28.
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Figure 29: Average leakage current measurement plotted as a normal distribution. Each red
circle corresponds to a single sample or chip. The best and worst values are also highlighted.

Therefore, it has been identified that the 715MHz is the optimal clock frequency where
all the KEYGEN, ENCAPS, and DECAPS operations of SABER can perform correctly.
In short, on a supply voltage of 1.2V, the optimal operating frequency is 715MHz,
and the consumed power of the SABER chip is 151mW (for KEYGEN), 158mW (for
ENCAPS) and 152mW (for DECAPS). Therefore, the average power consumption at
715MHz is 153.6mW .

The timing results in clock cycles and latency for KEM-supported operations are
given in Table 10. Column one provides the design parameter for clock cycles and latency
(µs). The corresponding values of clock cycles and latency for KEYGEN, ENCAPS,
and DECAPS operations of SABER are shown in columns two to four. The latency
value @ optimal 715MHz is calculated using Eq. 15. The DSE process in chapter 4
briefly describes the clock cycle information.

latency(in µs) = Clock cycles

Frequency (in MHz) = Clock cycles

715MHz
(15)

Table 10: Timing results for SABER after physical measurements at nominal 1.2V @ 715MHz.

Operation KEYGEN ENCAPS DECAPS
Clock cycles 7154 7136 9359
Latency (in µs) 10.00 9.98 13.08

Instead of the power and timing results, the top-level area breakdown of the fabricated
SABER design is presented in Table 11 where column one provides the design units
and column two shows the utilized area. It shows that the I/O placement, serial-in/out
interface, SABER crypto core, and four instances of small memories utilize 0.350, 0.041,
0.232, and 0.104mm2 area out of the total 1mm2 chip size. The sum of the area of
these blocks is 0.727mm2. The remaining area (1mm2–0.727mm2) is wasted with
mandatory empty spaces between the IO cells and the seal ring, the IO cells and the
core, and power rings.

After the area, timing, and power results, it is essential to show the fabricated
SABER chip’s response in different operating conditions (or supply voltage values).
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Table 11: Top level area breakdown of the SABER chip.

Design unit(s) Utilized area (mm2)
Pads and I/O ring 0.350
Wrapper + Serial interface 0.041
SABER crypto core 0.232
Memories 0.104

Generally, a Shmoo plot provides the graphical representation of the response of the
component (or) system varying over a range of conditions or inputs. Therefore, for
only the DECAPS operation of a SABER, the complete range that fabricated SABER
chip supports can be visualized in Fig. 30 where the horizontal axis shows the operating
frequency (in MHz), and each tick represents an increment of 10MHz. On the other
hand, the vertical axis shows the supplied voltage (in V ) in steps of 0.05V. It shows
that the fabricated SABER chip is fully operational at a very small clock frequency of
10MHz with a supplied voltage of 0.65V. The increase in VDD (from 0.65 to 1.4)
increases the operational frequency (from 10MHz to a bit more than 800MHz). Note
that the fabricated chip is functional in the green portion of Fig. 30 while the red area
determines that the chip is not-operational.
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Figure 30: Graphical representation of the entire range of operation that the chip supports
(Shmoo plot).

5.3 Comparison and Discussion

Several FPGA and ASIC SABER implementations are available in the literature. There-
fore, for a realistic comparison, Table 12 compares only the existing fabricated SABER
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chips with the demonstrated chip in this study7. Column one of Table 12 provides the
reference designs, whereas the implementation technology is given in column two. The
area in chip size is illustrated in column three. Column four provides the clock cycle
utilization for KEYGEN, ENCAPS, and DECAPS operations. The operating frequency
in MHz @ supply voltage is reported in column five. Similar to clock cycles, the
computation time in latency (in µs) for KEYGEN, ENCAPS, and DECAPS operations
is given in column six. Finally, the last column of Table 12 shows the fabricated chips’
power consumption (in mW ).

Table 12: Comparison of the fabricated SABER chip with existing PQC ASIC chips. All
implementation results are for security equivalent to AES-192.

Ref Tech Chip Clock cyles Frequency Latency (in µs) Power
size (MHz) (mW )

[32] 65nm 1.6 14336/18704/23376 160 @ 1.1V 89.6/116.9/146.1 –
[32] 65nm 1.6 14336/18704/23376 10 @ 0.7V 1433.6/1870.4/2337.6 0.334
[33] 28nm 3.6 –/–/– 500 @ 0.9V –/–/– 39–368

P
IP

_
SP 65nm 1 7154/7136/9359 160 @ 1.2V 44.7/44.6/58.4 43.5

65nm 1 7154/7136/9359 10 @ 0.7V 715.4/713.6/935.9 0.855
65nm 1 7154/7136/9359 715 @ 1.2V 10/9.9/13 153.6

Ref [32]: the clock cycles have been calculated by multiplying the corresponding latency
values with 160MHz clock frequency, PIP_SP: SABER design fabricated in this study.

A realistic comparison is made by operating the fabricated SABER chip on the same
conditions employed in [32] for measurement purposes, as presented in Table 12. More
precisely, in [32], the KEYGEN, ENCAPS, and DECAPS operations of SABER were
computed at 160MHz @ a nominal voltage of 1.1V, and a frequency of 10MHz @
supply voltage of 0.7V.

For two conditions when operating frequency = 160MHz @ 1.1 supply voltage
and operating frequency = 10MHz @ 0.7 supply voltage, the fabricated chip (in this
study) is 2, 2.62, and 2.50 times faster in terms of clock cycles and computational time
(latency) for KEYGEN, ENCAPS, and DECAPS operations of SABER, respectively, in
comparison to 65nm demonstrated SABER chip of [32]. The reason is a centralized
schoolbook multiplier utilized in this study from [122] for multiplying two 256-degree
polynomials in SABER. On the other hand, the SABER fabricated chip of [32] employs
a Toom-Cook multiplication method with a striding factor of 4, which reduces memory
requirements by half but takes significantly more clock cycles and utilizes more hardware

7Before comparing the chip results, it is essential to provide that in chapter 4, the DSE
process emphasizes using smaller and distributed memories to achieve high-speed PQC algo-
rithms implementation on the ASIC platform, which is (also) used in the high-speed SABER
chip design. More precisely, the chip contains four SRAM-based inferred memories, each with
a size of 256×64 and an addressing range of [0-255], [256-511], [512-767], and [768-1023].
However, a logic bug provoked the first address of memories 2, 3, and 4 to be incorrectly
decoded, resulting in data overwrite and a few flipped bits in the chip’s output compared to
the expected results. However, this issue can be bypassed by not using these memory addresses
in LightSABER. While on the other hand, the SABER and FireSABER variants will still be
affected. Nevertheless, this issue does not impact the computational blocks of SABER or
change the number of memory accesses. Therefore, we have the assurance that the reported
power values in this thesis are representative.
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resources. A comprehensive comparison over various multiplication architectures in
[108] reports that the Toom-Cook multiplier is known to be more hardware-intensive
than the schoolbook multiplier. Therefore, the use of a schoolbook multiplier along with
a shared shift buffer across several building blocks of SABER results in 1mm2 chip size,
which is comparatively 1.6 times lower compared to [32]. As shown in Table 12, instead
of the area and latency parameters, the power comparison is only possible for operating
frequency = 10MHz @ 0.7 supply voltage. Comparatively, the fabricated chip in this
study consumes 2.55 times more power because the objective of the fabricated SABER
chip was to obtain higher clock frequency. In contrast, the objective in [32] was low
area and power reduction.

Regardless of the operating conditions considered in [32], a comparison between the
clock frequency of 715MHz @ 1.2 nominal voltage (considered in this study) and the
maximum clock frequency achieved in [32] of 160MHz @ 1.1 supply voltage reveals
that the chip fabricated in this study performs 8.96, 11.80, and 11.23 times faster for
the computation of KEYGEN, ENCAPS, and DECAPS operations, respectively.

Table 12 shows that a realistic and reasonable comparison to [33] regarding the area,
timing, and power parameters is not feasible because the implementation technologies
are different. This study considers a 65nm process technology for silicon demonstrations
while a modern 28nm technology is utilized in [33]. In addition, the fabricated chip is
specific to SABER. At the same time, a silicon-implemented design of [33] considers
several cryptographic primitives (i.e., SABER, NTRU, CRYSTALS-Dilithium, Rainbow,
CRYSTALS-Kyber and McEliece). Depending on the execution of a specific crypto-
graphic protocol, the power values are 39–368mW . Hence, this comparison is also not
possible.
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6 Conclusions and Future Directions
The critical findings of this study are summarized in the following. Open-source
libraries/tools are always in the community’s interest. The polynomial multipliers
are essential for multiplying polynomial coefficients in cryptographic algorithms, including
PQC and homomorphic encryption schemes. At the onset of my research in 2020, it
was found that no open-source tool existed for generating these multipliers. Hence, I
developed the first open-source library for large integer polynomial multiplications to
address this gap. I believe open-source libraries and tools are always in the community’s
interest because they promote collaboration, innovation, and knowledge sharing. When
researchers and developers share their works on open-source platforms such as GitHub,
the respective community can benefit from their expertise and build upon their ideas,
leading to rapid outputs in research and development cycles.

Sometimes memory becomes a bottleneck in PQC accelerators. The perfor-
mance of the PQC algorithm as a hardware accelerator depends on the computation of
building blocks (i.e., multipliers, hash, samplers, etc.). Despite these blocks, memory
is essential in the hardware accelerators. In PQC algorithms, sometimes, it becomes
a real bottleneck when the high-speed designs are in the designer’s interest. One
of the approaches to overcome this bottleneck is to use faster SRAM-based RegFile
memories. Small and distributed memories (in parallel) improve throughput.
Several instances of small and distributed memories when running (all) in parallel are
advantageous to reduce clock cycles and critical paths and improve the operating
frequency. In addition, the parallel use of several smaller memories is more beneficial to
reduce frequent read/write access from the data memory. Overall, these advantages
help to maximize the throughput or performance of the PQC hardware accelerator.

One-time data loading and buffering benefits for designing efficient polynomial
multipliers. One of the approaches for performance improvement of polynomial
coefficient multiplications is to load data from memory only once and store it in long
polynomial buffers. This approach reduces the number of clock cycles required and is
particularly helpful in designing parallel multipliers. For instance, in the SS_Parallel
and DS_Parallel SABER designs, the schoolbook multiplier benefits from this one-time
loading approach, resulting in a lower clock cycles count. Similarly, this approach benefits
the design of a compact and parallel NTT-based multiplier for the CRYSTALS-Kyber and
CRYSTALS-Dilithium PQC algorithms, which are expected to be standardized in 2024.
It is worth noting that NTT-based polynomial multiplications are (also) required for
lattice-based homomorphic encryption schemes, in addition to PQC algorithms. Wider
data path benefits to high-speed crypto applications. Indeed, PQC algorithms
require variants of SHA3 and SHAKE hash functions, and these hashes operate on 64-bit
for permutation computations. Hence, all state-of-the-art PQC hardware accelerators
adopted a 64-bit data path in their designs. Instead of 64-bit, a 256-bit data path is
utilized in this thesis, concluding that the wider data path strategy reduces clock cycles
and allows for obtaining 2.5GHz on modern 28nm process technology but, on the other
hand, increases critical path delay.

Next, some future directions to extend this thesis work are provided. Design of
hardware accelerators. Several optimization techniques, including pipelining, resource
sharing, and wider data path strategy, have been employed to maximize the performance
of the PQC algorithm, specifically SABER, which remained a participant in the NIST
competition until round three. Even if the optimized approaches are applied to SABER,
they could be used in other PQC KEM and digital signature algorithms, such as
CRYSTALS-Kyber, LAC, CRYSTALS-Dilithium, and SPHINCS+, to improve their
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processing speed and performance. Apart from improving the performance of PQC
algorithms, the same optimization techniques with minor adaptations can also be used
to realize hardware resources and power consumption for a wide range of cryptographic
applications, including IoT and cloud computing. Unified ECC + PQC accelerators.
The ENISA report from 2021 [123] highlights the transition from the pre-quantum era
to the post-quantum one, which requires the combination of pre-and post-quantum
cryptography algorithms in a single cryptosystem to ensure security even for today’s
computers. Hence, this could be an attractive choice in the future.

Protection against physical attacks. This thesis explores only the hardware
realization of the lattice-based PQC schemes on the ASIC platform without focusing
on the side-channel resistance and other related attacks such as timing, fault, etc.
Hence, designing countermeasures against side-channel and fault attacks would be very
interesting for future research.
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