
DOCTORAL THESIS

Security-Aware Physical 
Synthesis of Integrated Circuits

Tiago D. Perez

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY 
TALLINN 2023



TALLINN UNIVERSITY OF TECHNOLOGY 
DOCTORAL THESIS

4/2023

Security-Aware Physical Synthesis of
Integrated Circuits

TIAGO D. PEREZ



TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

The dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Information and Communication Technology on 12 December
2022

Supervisor: Professor Dr. Samuel Pagliarini,
Department of Computer Systems, Centre for Hardware Security,

Tallinn University of Technology

Tallinn, Estonia

Opponents: Professor Dr. Ronald D. Blanton,
Carnegie Mellon University,

Pittsburgh, United States

Dr. Marie-Lise Flottes,
Centre National de la Recherche Scientifique,

Montpellier, France

Defence of the thesis: 8 February 2023, Tallinn

Declaration:
Hereby, I declare that this doctoral thesis, my original investigation, and achievement, 
submitted for the doctoral degree at Tallinn University of Technology, has not been 
submitted for any academic degree elsewhere.

Tiago D. Perez
signature

Copyright: Tiago D. Perez, 2023 
ISSN 2585Ű6898 (publication) 
ISBN 978-9949-83-947-6 (publication) 
ISSN 2585Ű6901 (PDF)
ISBN 978-9949-83-948-3 (PDF)

Printed by Auratrükk



TALLINNA TEHNIKAÜLIKOOL 
DOKTORITÖÖ

4/2023

Integraallülituste turvateadlik füüsiline
süntees

TIAGO D. PEREZ





Contents

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 7

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 8

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 10

1.1 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 14

2.1 History and TodayŠs Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Integrated Circuit Digital Design Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Hardware-based Threats and Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Computing Platforms and Hardware Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Secure GPU-like ASIC Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction and Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 G-GPU Baseline: the FGPU .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 GPUPlaner Tool and Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Split Manufacturing: Attacks and Defenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Attacks on Split Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Split Manufacturing Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Hardware Trojans Design and Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Side-Channel Trojan and its Insertion via ECO .. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Testchip: Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Blind Insertion of HTs Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 75

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 76

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 77

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 91

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 92

Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 97

Appendix 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 123

5



Appendix 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 131

Appendix 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 135

Appendix 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 141

Appendix 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 153

Appendix 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 169

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 175

Elulookirjeldus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 177

6



List of Publications
The present PhD thesis is based on the following publications.

[I] T. D. Perez and S. Pagliarini, ŞA survey on split manufacturing: Attacks, defenses,
and challenges,Ť IEEE Access, vol. 8, pp. 184013Ű184035, 2020

[II] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, ŞSide-channel trojan insertion - a
practical foundry-side attack via eco,Ť in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1Ű5, 2021

[III] T. Perez and S. Pagliarini, ŞA side-channel hardware trojan in 65nm cmos with
2µW precision and multi-bit leakage capability,Ť in 2022 27th Asia and South
PaciĄc Design Automation Conference (ASP-DAC), pp. 9Ű10, 2022

[IV] T. D. Perez, M. M. Gonçalves, L. Gobatto, M. Brandalero, J. R. Azambuja, and
S. Pagliarini, ŞG-gpu: A fully-automated generator of gpu-like asic accelerators,Ť
in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 544Ű547, 2022

[V] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, ŞA pragmatic methodology for blind
hardware trojan insertion in Ąnalized layouts,Ť in 2022 International Conference
on Computer-Aided Design (ICCAD), 2022

[VI] T. D. Perez and S. Pagliarini, ŞHardware Trojan Insertion in Finalized Layouts:
From Methodology to a Silicon Demonstration,Ť IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2022

Other related publications

[VII] Z. U. Abideen, T. D. Perez, and S. Pagliarini, ŞFrom fpgas to obfuscated easics:
Design and security trade-offs,Ť in 2021 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), pp. 1Ű4, 2021

7



Abbreviations

3PIP Third Party Intellectual Property
AES_LFHD AES Low-Frequency-High-Density
AES_HFHD AES High-Frequency-High-Density
AI ArtiĄcial Intelligence
APU Accelerated Processing Units
ARPANET Advanced Research Projects Network
ASIC Application-SpeciĄc Integrated Circuit
BEOL Back End of the Line
BioHT Blind Insertion of Hardware Trojans
CAGR Compound Annual Growth Rate
CCR Correct Connection Rate
CMP Chemical Mechanical Polarization
CPU Central Processing Unit
CU Computing Unit
DFM Design for Manufacturability
DRC Design Rule Checking
DSE Design-Space Exploration
ECO Engineering Change Order
EDA Electronic Design Automation
eFPGA Embedded Field Programmable Gate Array
EM Electromagnetic
EMSR Effective Mapped Set Ratio
FEOL Front End of the Line
FIB Focused Ion Beam
FPGA Field Programmable Gate Array
GPU Graphic Processing Unit
HD Hamming Distance
HDL Hardware Description Language
HPC High-Performance Computing
HT Hardware Trojan
IC Integrated Circuits
IIFT Imprecise Information Flow Tracking
IP Intellectual Property
LEF Library Exchange Format
LSI Large-Scale Integration
LUT Look-up Table
LVS Layout Versus Schematic
MCTRL General Memory Controller
ML Machine Learning
MUX Multiplexer
PPA Performance, Power and Area
PCB Printed Circuit Board
PDK Process Design Kit

8



PE Processing Elements
PST Present Crypto Core
PST_LFHD Present Low-Frequency-High-Density
PST_HFHD Present High-Frequency-High-Density
RO Ring Oscillator
RTL Register-Transfer Level
SADP Self-Aligned Double Patterning
SCT Side-Channel Hardware Trojan
SDC Synopsys Design Constraints
SEM Scanning Electron Microscope
SIMT Single-Instruction Multiple Threads
SNR Signal-to-Noise Ratio
SoC System-on-Chips
SSF Signal Selection Function
TCO Trojan Change Order
TLP Thread-Level Parallelism
TPU Tensor Processing Unit
TTE Time to Evaluate
ULSI Ultra-Large-Scale Integration
UPF UniĄed Power Format
VLSI Very Large-Scale Integration
WLO Wirelength Overhead

9



1 Introduction

The digitalization of society has rapidly changed many aspects of our lives [1]. Today,
semiconductors power almost everything in our daily activities [2]. Thus, many critical
infrastructures deploy Integrated Circuits (ICs)-based systems. For example, even the
Ąnancial sector experienced fast and deep digitalization in the past decades [3]. Moreover,
in many parts of the world, governments are creating their digital form of currency [4].
Because IC-based systems are increasingly deployed in critical infrastructures, ensuring
the trustworthiness of such devices is crucial. A compromised device that handles
sensitive data or is essential for the functionality of a critical system can have devastating
consequences. Therefore, guaranteeing the trustworthiness of ICs is vital. However,
ensuring the ICŠs security is an open research question the community strives to solve.

All digitalization processes were possible because of the rapid development of ICs.
Capable modern system-on-chips (SoCs) require powerful and efficient transistors
coupled with optimized system architectures. A modern SoC architecture combines
different computing units, often integrating a general-purpose processor (CPU), speciĄc
hardware accelerators, memories, and standard interfaces to connect everything. CPUs
are very Ćexible, handling diverse types of workloads with satisfactory performance.
Since its conception, CPU architectures have been optimized to increase the number
of operations over time, and recently, they are also optimized for power efficiency.
However, for some speciĄc applications, CPUs performance is not sufficient. Thus,
CPUs are integrated with hardware accelerators to run speciĄc applications or parts
of applications more efficiently. Examples of hardware accelerators are crypto cores
for efficient encryption/decryption [5] and Graphics Processing Units (GPUs) [6Ű9]
for handling massive parallel computations. Thus, combining CPUs with hardware
accelerators achieves superior performance and efficiency, enabling applications previously
considered infeasible due to the long execution time.

Designing and manufacturing a single modern IC requires a colossal amount of
expertise among different Ąelds of science [10]. In addition, developing and maintaining
a high-end semiconductor manufacturing process is a costly endeavor. Reportedly, Intel

is investing over 17 billion euros into a leading-edge semiconductor manufacturing
facility in Germany [11]. Consequently, the conception of a modern hardware device is a
collective effort shared between different entities. This characteristic makes the IC supply
chain decentralized, complex, and highly globalized. Moreover, for modern hardware
devices, the current organization of the IC supply chain is arguably a security threat.
A heavily-debated example that illustrates the consequences of a compromised supply
chain is the attack from Chinese spies that allegedly targeted almost 30 U.S. companies,
including Amazon and Apple. According to [12], in 2015, an extra component was
found in server motherboards that allowed the attackers to create a stealth doorway
into any network that included a compromised machine. Those servers had been in use
for a couple of years already, with Apple reportedly having almost 7000 running.

Ensuring the integrity of the technologies is crucial for protecting digital information
and maintaining critical operational systems. The Ąeld of Cybersecurity was born in the
1970s with the project Advanced Research Projects Agency Network (ARPANET) [13].
Since then, the security Ąeld has advanced signiĄcantly. The focus of the security

10



community has been on the software domain, with hardware security as a secondary
thought. However, over the last few years, there has been an exponential growth
in hardware vulnerability exposure [14]. The development of patches to Ąx software
vulnerabilities are almost always possible and done very quickly. Different from software,
a vulnerability in hardware cannot be updated easily. Thus, attacks, as [12], are
potentially more devastating than any other software-based attack. Nevertheless, an
electronic system has to be secure from end to end, i.e., secure software running in
secure hardware [15].

FoundryDesign Company3PIP Vendors

Logic Locking Hardware Trojan

IC Camouflage Reverse Engineering

Split Manufacturing IP Piracy

IC Overbuilding

Counterfeiting

Side-Channel Attacks

Test & Package facility

Design Phase Manufacturing Test & Packaging

Chapter 3 - Secure GPU-like ASIC Accelerators 

Chapter 4 - Split Manufacturing Attacks and Defenses

Chapter 5 - Hardware Trojans Design and Insertion

In
-t

h
e

-f
ie

ld

Figure 1: Detailed IC’s life cycle phases, possible attacks, and defenses.

An overview of ICŠs life cycle is illustrated in Figure 1, showing the four phases of
an ICŠs life; design, manufacturing, test & packaging, and Ąeld operation. Each phase
has an associated set of potential hardware-based threats [16] as illustrated in Figure 1.
During the design phase, an adversary can insert hardware trojans [17Ű20], reverse
engineer, and pirate IPs. IC overbuilding, reverse engineering layouts, counterfeiting,
and insertion of hardware trojans are associated with the manufacturing phase. A rogue
element within the facility for packaging & testing can potentially reverse engineer or
pirate the device. Side-channel attacks require access to the physical device; thus, the
end-user can perform such attacks.

Hardware security techniques can be implemented in different phases of the ICŠs life
cycle to enhance its security. Examples of these techniques are Split Manufacturing
[21,22], Logic Locking [23Ű29] and IC CamouĆaging [30Ű32]. As illustrated in Figure 1,
Split Manufacturing and IC CamouĆaging can combat a series of manufacturing threats.
Logic Locking and IC CamouĆaging can prevent attacks during the test & packaging
and when the chip is in the Ąeld by an end-user. Unfortunately, the current state of these
techniques makes them unsuitable for large-scale production of ICs, either because of
practicality [22] and/or insufficient security guarantees [33]. Without countermeasures,
the described hardware-based threats are potential security hazards. Therefore, the
emerging research topic of Hardware Security is striving to solve the IC security problem.

Hardware security is becoming an important Ąeld of research over the years. As a
result, the Ąeld has been gaining more attention. Also, more groups of hardware security
research have been created, and the topicŠs popularity in well-regarded conferences has
increased. In addition, many specialized conferences dedicated to Hardware security

11



were created, such as CHES [34], the HOST series [35,36], COSADE [37], and many
others. This communityŠs end goal is to ensure IC-based devicesŠ trustworthiness. To
achieve this goal, the community has been studying and exposing potential threats,
creating countermeasures for known threats, and developing novel design techniques to
enhance the ICŠs security.

The central theme of this thesis is the study of IC design techniques, either for
enhancing IC security or exposing security Ćaws. First, I will propose a design technique
to mitigate the presence of a possible hardware trojan and/or to be used as a fault
tolerance technique (similar to triple modular redundancy). Following, I will discuss a
countermeasure against threats during the manufacturing, called Split Manufacturing.
Finally, I will demonstrate hardware trojan insertion step by step during the manufacturing
phase. The threat model for this attack assumes the adversary only holds the victimŠs
IC layout. Therefore, the adversary extracts all the information necessary for performing
the attack from the layout.

1.1 Thesis Outline and Contributions

The present thesis comprises the published scientiĄc articles in the List Of Publications
section. This manuscript comprises six chapters and presents a study of physical
synthesis for securing ICs. The chapters are: Background, three contribution chapters,
Conclusion, and Future Work.

A summary of the material of each chapter is listed as follows.

Chapter 2 – Background: In this chapter, I present the essential concepts and
theories of the contents of this thesis. The Ąrst topic is the semiconductor industry,
where I present the evolution of the IC supply chain and the current practices of
the semiconductor industry. Following, I introduce how ICs are designed, from the
speciĄcations to the Ąnalized layout. After this introduction, I present the state of the
art of hardware-based threats and countermeasures. Finally, the last topic covered is
hardware accelerators, their architectures, and applications.

Chapter 3 – Secure GPU-like ASIC Accelerators: This chapter comprises the
Publication [IV]. The contribution of Chapter 3 is a secure GPU-like ASIC accelerator.
The literature review shows that the lack of an open-source GPU architecture for ASIC
is a research gap. The FGPU, a GPU architecture for FPGA platforms, is among the few
GPU architectures available. Utilizing the FGPU architecture as the baseline, I translated
it to target an ASIC platform. I optimized the architecture to improve its performance,
achieving operating frequencies ten times faster than its FPGA counterpart. After
tweaking the architecture, I improved the security of the architecture by creating distinct
power domains for each computing unit (CU) of the GPU. This feature enables the
possibility of choosing which CU the user wants to turn on, and the others can be fully
shut down. The result of this study is a fully-automated tool for generating GPU-like
accelerators for ASIC. My tool permits the user to modulate the GPU regarding the
number of CUs and which one will have its own power domain. The result of this tool
is the layout of a GPU ready for being manufactured Ű this GPU is termed G-GPU.

12



Chapter 4 – Split Manufacturing Attacks and Defenses: This chapter com-
prises the Publication [I]. The contribution of Chapter 4 is the first survey on Split
Manufacturing. From a literature review, I identiĄed that the Split Manufacturing
technique research was mature and relevant for having a survey. On top of that, I
addressed a controversial topic among the recent publications on Split Manufacturing.
In this survey, I comprehensively classiĄed every attack against split layouts and every
defense technique for enhancing even further split layouts security. In addition, a
thorough discussion is presented about the strong and weak points of the current Split
Manufacturing state of the art. I argue that this survey is very important for future
research on Split Manufacturing, being a focal point to start from for security experts
interested in the topic.

Chapter 5 – Hardware Trojans Design and Insertion: This chapter comprises
Publications [II], [III], [V], and, [VI]. The contribution of Chapter 5 is a full framework
for designing and inserting hardware trojans in Ąnalized layouts. This framework is
the first to disclose step by step how to perform hardware trojan inserting during a
fabrication-time attack, where the attacker only holds the victimŠs layout. To validate
this framework, I developed a silicon prototype comprising four crypto cores altered
with a side-channel trojan. This work started with developing a technique for modifying
a Ąnalized layout. For that, I leveraged a feature called engineering change order (ECO).
Using ECO, I modiĄed Ąnalized layouts with additional malicious logic. This is the first
demonstration of hardware trojan insertion utilizing ECO. Furthermore, I designed a
side-channel trojan capable of leaking multiple bits into a single power signature reading
to demonstrate the proposed ECO frameworkŠs capabilities. The Ąrst version of the
ECO framework has a deĄciency. Critical nodes for connecting the hardware trojans
must be located by visually inspecting the layout. Reverse engineering techniques are
utilized to address the ECO framework limitation, adding the capability of inserting
hardware trojans totally blindly. In addition, the framework is also improved by making
the insertion iterative and faster.

Chapter 6 – Conclusion and Future Work: In this Ąnal chapter, I summarize all
the results from the contribution chapters. The Ąnal conclusion is drawn, and a list of
possible directions for future work is presented.

13



2 Background

2.1 History and Today’s Integrated Circuit

After the invention of the Ąrst transistor in 1947, the semiconductor industry experienced
rapid growth. In 1961, the Ąrst integrated circuit patent was awarded, marking the
dawn of the era of IC-based devices [38]. As ICs started to be widely adopted in various
electronic appliances, semiconductor supply companies started to invest in developing
the IC, engaging in Ąerce technological and price competition [39]. The advances done
by these companies developed the so-called large-scale integration (LSI) era, where a
single chip contains hundreds of transistors. From there, the development reached a
very large-scale integration (VLSI) phase with chips containing from 100 thousand to
10 million transistors, and Ąnally, the ultra-large-scale integration (ULSI) with more
than 10 million transistors per chip. Currently, the chase toward high performance and
multiple functions continues. The largest commercial IC available in 2022 is the M1

Ultra commercialized by Apple. This IC has a transistor count of 114 billion while
featuring a dual die in a single package manufactured in a 5nm FinFET technology.

As the IC evolved, the semiconductor supply chain also changed with it. During
the 1980s, Japan dominated the semiconductor market since it provided better yield
and products at that time [40]. Japanese businesses were fully integrated, vertical
conglomerates, managing everything from manufacturing their chips to building their
own devices and even global and local distribution of their products. In the 1990s,
the emerging economies of Korea and Taiwan started to dominate the semiconductor
market. Investing heavily solely in the manufacturing process, with records of frequently
spending 100% of their revenue on capital expenditure (i.e., re-investing back in their
own company) [41]. Thus, industries with advanced and mature manufacturing processes
began to implement the service of only manufacturing semiconductors (i.e., pure-play
foundry) [42]. Because these pure-play foundries had, and still have, the best transistors
in the market, the IC supply chain experienced a shift to a horizontal system, making this
chain decentralized and much more complex. Current semiconductor industry practices
are primarily horizontal, where design houses are ŞfablessŤ and rely on pure-play foundries
to manufacture their designs.

Figure 2: Growth of design rules from CMOS 180nm until finFET 5nm (from [43]).

14



The pursuit of denser and faster ICs sharply increased the complexity of manufacturing.
This increasing complexity drives the need for more powerful electronic design automation
(EDA) tools, related IP libraries, and new implementation strategies such as special
packaging, stacked die technologies, and other assembly techniques [44]. The number
of design rules and the total number of manufacturing steps can represent the increasing
complexity of conceiving an IC. Advanced nodes experienced exponential growth of
design rules [43], and the exponential jump in the number of rules during the design
rule checking (DRC) with the evolution of the nodes is illustrated in Figure 2. The same
trend happens for the number of manufacturing steps [45], depicted in Figure 3. To put
all these in perspective, a design company needs access to an operational manufacturing
process, a capable EDA tool vendor, and a specialized IP provider for manufacturing a
modern complex chip. Even companies that control the manufacturing process, such as
Intel, requires help from other entities to develop their products [46].

Figure 3: Logic manufacturing process steps comparison between CMOS 28nm, FinFET 10nm,
and, FinFET 5nm, technology nodes (from [45]).

Currently, almost all design companies operate as described in Figure 1. First, some
blocks are developed in-house during the design, while some parts of the design are IP
bought from 3PIP vendors. Then, the Ąnalized layout instantiates IPs provided by a
third party, and the design company can develop some parts in-house. Finally, most
design companies have to utilize pure-play foundries for manufacturing. Foundries can
package and test the chips; however, in many cases, the bare dies are sent to another
specialized facility for that process. In addition, to compete in the current market,
companies must use EDA tools to produce a modern functional chip. Hence, this
brief description of the process of producing an IC shows how the IC supply chain is
decentralized, complex, and globalized. As Figure 4 illustrates, the number of high-end
foundries has been steadily declining over the past decades. Today, only three companies
can manufacture at advanced nodes, and that number is expected to shrink to only
two in the future.

In 2020, the semiconductor industry experienced a rapid surge in demand for chips.
The leading cause of this increased demand was the epidemic caused by the spread of the
COVID-19 virus [48]. Because of the small number of capable facilities to manufacture

15



Figure 4: Semiconductor industry evolution (from [47]).

modern ICs (see Figure 4), the market is experiencing a shortage of chips [49, 50].
According to a survey conducted by the European Commission [51], 83.3% of the
respondents were directly affected, and 16.7% were indirectly affected. Moreover, most
companies interviewed expected the shortage to last until 2024. This shortage portrays
how difficult it is to restructure the semiconductor supply chain and how vital chip
manufacturing is for the global market [52].

2.2 Integrated Circuit Digital Design Implementation

The complexity of building an advanced IC is very high, requiring hundreds of steps
(see Figure 3). Manufacturing processes build the IC from the bottom to the top layer.
Those layers can be seen in the cross-section of an IC in Figure 5. At the bottom is
the front end of the line (FEOL) layer containing all the transistors. On the top is
the back end of the line (BEOL) layer composed of all the metals. The metal layers
are referred to as MX, where X is the level of the layer. Metals are interconnected
by vias, referred to as VX, following the same naming scheme for metals. Foundries
often provide different metal stacks for each technology, differing in the number of
metal layers and/or the properties of some of the metals. From a designerŠs perspective,
the number of metal layers available represents the routing resources. For example, a
metal stack containing more metals can route a design easier, of course, if compared
with another metal stack from the same technology. Nevertheless, cost and technical
limitations limit the scalability of the metal stack. In some cases, a small number of
metal layers is more than enough for routing the design, reducing the overall cost of
the chip.

SoCs can integrate analog circuits, digital logic, and memories in one single chip.
The design of analog circuits for ICs is a full-custom design because the designer must

16



...... ...

Wire
Via

M1, V1
M2, V2
M3, V3
M4, V4
M5, V5
M6

MX, VX-1

FEOL
LAYER

BEOL
LAYER

Figure 5: Cross section of an Integrated Circuit (from [22]).

deĄne all layers of the device, i.e., FEOL and BEOL. Hence, the designer can beneĄt
from complete control for optimizing the circuit but trading-off design time. On the
other hand, the digital logic implementation utilizes the notion of standard cells. Those
cells have standardized sizes regarding their height; thus, they can be placed in rows
side-by-side. Nonetheless, placing the cells in rows facilitates the overall placement
and the power distribution strategy. Each of those cells, or gates, is either a Ćip-Ćop
register for storing bits, a buffer, an inverter, or performs a unique logic operation (e.g.,
AND, OR, XOR). Foundries and speciĄc vendors provide standard-cell IP libraries fully
characterized in terms of process variation, voltage, and temperature. Utilizing standard
cells, the designer must only deĄne the position of the gates and the metal layers. Thus,
the gates already have the FEOL deĄned, and the designer only must deĄne the BEOL.

Lo
g

ic
a

l

HL System

Description

Specification

For ASIC

System 

Partitioning
Micro 

Arch. 

Design

Constraints

Floorplan

Timing 

Libraries

Physical 

Libraries

Gate-level 

Netlist
Placement

Clock-tree

Synthesis
Route Signoff

Chip 

Finishing

RC 

Parasitics

Finalized 

Layout

Simulation

Design

Constraints

Timing 

Libraries

Micro Arch. To 

HDL RTL
Logical 

Synthesis

Gate-level 

Netlist

Micro 

Arch. 

S
y

st
e

m
P

h
y

si
ca

l

Design

Constraints

Figure 6: Typical design flow for digital integrated circuits.

Contrary to analog designs with a minimal number of transistors, a single digital
sub-block of a modern application-speciĄc integrated circuit (ASIC) can have more than

17



a million gates1. Thus, combining the usage of standard cells with powerful EDA tools
for automation becomes a necessity for enabling the implementation of digital designs.
Next, a brief introduction of how to perform a typical digital design implementation for
ICs is shown.

Implementing a digital design can be separated into three phases: system, logical,
and physical. This process results in a layout of all layers (FEOL+BEOL) that the
foundries utilize as a blueprint for manufacturing the IC, typically handled in GDSII
format. Figure 6 illustrates a diagram Ćow of this process in detail.

The designer must deĄne a high-level description of the system and a set of con-
straints that deĄnes the initial speciĄcation of the system. Usually, larger systems
are partitioned into small microarchitectural blocks, making the implementation more
time-efficient. Hence, many engineers can work in parallel, speeding up the implemen-
tation process. Generally, companies acquire IP for some microarchitectures of their
system or commission its design to other vendors. Later, an SoC integrator connects the
blocks back into a single system. This strategy is depicted in Figure 7. A set of design
constraints for the speciĄcation phase is an estimation of the desired performance, power
consumption, and area (PPA). The performance combines the operating frequency,
throughput, and delay for generating a valid output.

DemapperEqualizer Deframer
Symbols

Binary 
Message

Transceiver

CPU

Transceiver

Analog 
and RF

Memories

System-on-Chip

1 module equalizer (
2 clk,
3 reset,
4 x,
5 y);
6
7 input clk, reset;
8 input [n-1:0] x;
9 output [n-1:0] y;

HDL Gate-Level Netlist

Partitioning

System Level

Reg

X X

+

Reg

X

+

Reg

X

+

X(n)

y(n)

CmC2C1C0

Equalizer

Microarchitecture

Figure 7: Abstraction levels of a digital system.

Estimating the power consumption of an IC is complex. Total IC power consumption
is divided into static and dynamic components. Leakage power is the static component
of power and depends mainly on the threshold voltage of the transistors. On the other
hand, dynamic power depends on the circuitŠs activity. Dynamic power is also divided
into internal and switching components. Switching power is the driving of output loads,
dissipated when internal cell and wires capacitors are charged and discharged. When a
cell switch states, an instantaneous short-circuit connection between the core supply
voltage and the ground occurs momentarily; during this moment, internal power is
dissipated. Therefore, in estimating the power consumption during the speciĄcation
phase, the designer must reasonably estimate the designŠs number of gates and operating
frequency. The same is true for estimating the total area because it is primarily a

1A gate, or standard-cell, contains more than one transistor. Typically, the smallest gate is
an inverter with a minimum of two transistors, depending on the IP library and technology.

18



function of the number of gates and other secondary factors such as density (area
populated with gates versus empty space), aspect ratio, and pinout position. Hence,
the set of design constraints from the speciĄcation phase might not be feasible for
implementation. Through the implementation steps, PPA Ągures are increasingly more
accurate to report. Accordingly, often the speciĄcations are adjusted after the logical
and physical synthesis.

After the system phase, the design is sequentially represented in three different
abstraction levels: register-transfer level (RTL), gate level, and layout. First is the
RTL, where the logic behavior of the microarchitecture is described utilizing a hardware
description language (HDL), such as VHDL, Verilog, or System-Verilog. RTL is a precise
and formal description that allows the automation of digital circuitsŠ simulation. During
this phase, the designerŠs responsibility is to ensure the circuit behaves as expected in
terms of functionality and latency (clock cycles to produce a valid output).

After behaviorally checking the RTL, the next abstraction level is the gate level.
Generating the gate-level netlist requires a standard-cell IP library. Thus, for this phase,
the designer must have decided with which technology the IC will be manufactured. The
process of generating the gate-level netlist is called logical synthesis. Inputs required
for the synthesis are the RTL, standard-cell timing library, and design constraints. As
mentioned, foundries and vendors characterize each gate regarding process variation,
voltage, and temperature. These characteristics are usually compiled in a standard
Liberty format. Liberty Ąles contain all available gates and their characteristics. Char-
acteristics include logical function, pinout, delay, transition time, input capacitance,
dynamic power, leakage power, setup time, hold time, and many more [53]. In addition
to the timing library, the designer must set the design constraints, utilizing the Synopsys
Design Constraints (SDC) format. The SDC Ąle is where all clocks, input delay, output
delay, and many other parameters can be described and constrained.

Clock

D

Changing ChangingStable
Time

Tsetup Thold

Figure 8: Setup and hold time.

The logical synthesis aims to translate the RTL into logical gates and achieve the
performance set in the design constraints. For sequential logic, the circuit works under
a set operating frequency where data is stored in registers each clock cycle. Data must
travel from register to register in a time under a clock period Tperiod. Thus, logical
synthesis tools must analyze setup timing to guarantee that the circuit will operate at
the set frequency. Furthermore, during the physical synthesis, hold time is analyzed.
Setup and hold time characteristics deĄne when the data must stay stable at the register
D pin, as illustrated in Figure 8. For checking for timing violations, the EDA tools

19



measure the time between each register, called path delay, and calculate the timing
slack for setup and hold, as illustrated in Figure 9. Following the example in Figure 9,
paths delay are timed as:

1 Data is launched from Reg1/D at the positive t0 clock edge at Reg1/C, requiring
Tck−>q time units

2 Data travels from Reg1/Q through a combinational logic to Reg2/D, requiring
Tprop time units

3 Data is captured at Reg2/D at the positive t1 clock edge at Reg2/C. The data
must be stable Tsetup time units before this clock edge and Thold after.

C

D Q

C

D Q
Comb.

Logic

Clock

Reg1 Reg2

Clock Reg1

Clock Reg2

Hold

Hold
Setup

Timet0 t1 t2 t3

Figure 9: Timing path calculation example.

Then, timing setup analysis at Reg2 is done by checking the stable time before t1
positive clock edge at Reg2/C, i.e., the time slack described by Equation 1. Finally,
hold analysis at Reg2 is done by checking the stable time after t1 positive clock edge at
Reg2/C, i.e., the time slack described by Equation 2. Note that hold does not depend
on the clock period, only setup. EDA tools consider a time setup and hold slack equal
to zero as a non-violating timing path (i.e., the circuit can operate without a timing
problem). However, typically designers choose a margin of a few picoseconds for both
setup and hold slack.

Setup slack = Tck−>q +Tprop +Tsetup −Tperiod (1)

Hold slack = Tck−>q +Tprop −Thold (2)

Therefore, the designer must analyze the timing after logical synthesis to ensure the
slack is within the desired margin or at least positive. If the slack for setup or/and hold is
negative, the design has a timing violation and will not function correctly. Fixing timing
violations in this phase is done by redeĄning the design constraints, changing the design
architecture for inserting additional pipeline stages, or performing resynthesis/retiming.

20



In addition, from the gate-level netlist, it is possible to analyze power and area to
contrast them with the speciĄcations. Power and area from the gate-level netlist are
representative but not accurate enough. The physical synthesis can, in some cases,
change these Ągures drastically.

Finally, the Ąnal phase is the physical synthesis to generate the design layout. The
layout level of abstraction now requires physical information about the standard cells
and metal stack. For digital circuits, the physical synthesis treats each gate as a Şblack
boxŤ, i.e., internal details of the transistor level are not required. However, essential
information and design rules are required, such as box dimension, pinout position, metal
layer, obstruction layer, and orientation. In addition, the EDA tool also must know
how to handle the metal layers, e.g., the number of metals, the allowed width of each
metal, and the type of vias. Library Exchange Format (LEF) Ąle is the preferred format
to describe the physical characteristics of each available gate and the metal stack.
Then, inputs for the physical synthesis are the gate-level netlist, timing libraries, design
constraints, and LEF Ąles for the gates and the technology LEF Ąle.

The whole process of physical synthesis is very complex, comprising many steps.
For the sake of simplicity, the following synthesis explanation is divided into six steps:
Ćoorplanning, placement, clock-tree synthesis, routing, signing off, and chip Ąnishing.
Also, the following explanation focuses on block implementation. Managing a top-level
layout requires many speciĄc steps and decisions that are not covered in this thesis.

Floorplanning Placement Clock Tree Synthesis Routing

Figure 10: Block design implementation steps; floorplanning, placement, clock-tree synthesis,
and, routing.

For block implementation, Ćoorplanning is sizing the block box for a target density,
deĄning the pinout, and power distribution implementation. Setting density is very
accurate at this phase because all required gates are in the netlist. Nevertheless, the
density difference between Ćoorplanning and the Ąnalized layout may slightly differ. The
difference is due to added buffers during the clock-tree synthesis, timing optimization,
and the resizing of cellsŠ drive strength. Illustrated in the Ąrst panel of Figure 10 is
an example of a block Ćoorplan. Figure 10 shows the upper metal stripes for power
distribution highlighted in yellow and orange, the bottom metal stripes in blue, and the
yellow arrows represent the pinout of the block.

The next step after the Ćoorplanning is the placement. In general, running the
placement requires a single command in a commercial EDA tool, such as Innovus
from Cadence [54]. Nonetheless, the designer can control many parameters of the
placement. The placement algorithm is not only for placing the gates coherently with
their interconnections but also is time aware. Therefore, gates are placed in such a

21



way as to achieve the best setup/hold timing slack. On top of that, modern tools
also do a trial route for estimating routing congestion. Consequently, timing can be
analyzed more accurately after the placement than in logical synthesis. Furthermore,
the trial route provides a good amount of information to check if the design is routable.
Illustrated in the second panel of Figure 10 is an example of block placement. Note
that the power grid stripes and the trial route are hidden.

Before the clock-tree synthesis, timing analysis does not consider the clock skew,
i.e., the clock distribution is ideal and reaches each register simultaneously. However,
realistically the clock signal will never reach registers simultaneously; a skew between
all clock inputs will always exist. Thus, to balance the clock delay for all clock inputs,
the clock-tree synthesis inserts buffers/inverters in the clock routing. Illustrated in
the third panel of Figure 10 is an example of a clock tree. After this synthesis, the
clock is propagated, considering the expected delay between all clock inputs, making
the timing analysis more realistic. With the propagated clock, timing analysis includes
the skew between the launch and capture clock when timing the paths. Modern EDA
tools can leverage the clock skew to improve performance, a technique called useful
skew. For more details on useful skew and other timing optimization techniques, such
as borrowing time, I direct the reader to [55,56].

With all the gates placed and the clock tree routed, the next step is to route all
the interconnected gates. Routing a design is to draw wires between all drivers and
sinks. Nevertheless, depending on the amount of routing resources, design rules, and
congestion, routing can be very challenging and take several hours, or even days, to
complete. Moreover, a challenging routing may fail mainly because the tool can only
Ąnd how to route by violating design rules. In some cases, post-route optimizations
can Ąx the routing if the number of design rule violations is reasonably low. However,
if the post-route optimizations cannot Ąx design rule violations due to the routing,
the physical synthesis process must restart from the Ćoorplanning. Then from the
Ćoorplanning, the block box can be resized, the pinout repositioned, the power grid
adjusted, or all three to make the design routable. Illustrated in the fourth panel of
Figure 10 is an example of routing without any design rule violation.

Before the routing, tools calculate the RC parasitics using an estimated wire length.
Therefore, all effects considered due to parasitics are estimated. With the design routed,
the EDA tools can extract the RC characteristics of all wires with a high degree of
accuracy; this is called RC parasitics extraction. Then, a signing-off phase is necessary
to consider the RC parasitics information for analyzing the timing. For timing analysis,
the more accurate RC information changes the load of the pins for all cells. Pin load
affects the speed of the cells; hence, signing-off timing analysis has a more accurate
Tck−q and Tprop times. Depending on the level of route congestion, the wireŠs RC
parasitic (especially coupled capacitance) could heavily impact the performance. Modern
EDA tools can Ąx timing violations during the signing-off to a certain degree, and
even specialized tools for this purpose are available (e.g., Tempus from Cadence). The
signing-off phase also includes the analysis of signal integrity and power integrity. For
more detail on these analyses, I direct the reader to [57].

Finally, the last phase is chip Ąnishing. For block implementation, chip Ąnishing
includes physical veriĄcation and layout versus schematic (LVS) checking. Physical

22



veriĄcation is the design rule check (see Figure 2) to make sure that all metal layers
(BEOL) deĄned in the layout are compliant with the design rules. LVS compares the
extracted netlist from the layout to the original schematic netlist to check if all devices
in the layout match the schematic.

A block layout is considered tapeout-ready if it has no timing violations, no DRC
violations, and LVS matches. Nonetheless, EDA vendors also provide additional solutions
for logical equivalence checks, structural analysis, timing constraint veriĄcation, design
for test, and many others. However, these tools do not take into account any security
aspect. Either for ensuring security or for checking for potential vulnerabilities. Thus,
most companiesŠ implementation Ćow of digital ICs is oblivious to hardware security.

2.3 Hardware-based Threats and Countermeasures

As electronic systems are increasingly deployed in critical infrastructure, counterfeit
and maliciously modiĄed ICs have become a signiĄcant concern [58]. Assessing the
trustworthiness of the design and manufacturing of ICs has become more challenging
over the years [59]. As discussed in Section 2.1, the primary factor for this problem
is the decentralization and globalization of the IC supply chain. It is conceivable Ű if
not likely Ű that a fault in a low-quality counterfeit IC (or even a maliciously modiĄed
IC) will effectively disrupt critical infrastructure with dire consequences. Therefore,
hardware security has gained more attention in the past decades, emerging as a relevant
research topic.

An IC passes through many different entities during its lifecycle (see Figure 1). Thus,
establishing trust between all involved parties is very difficult in practice. During the
design phase, as shown in Section 2.1, some blocks are in-house developed, some are
third-party IPs, and others are commissioned to be developed in a third-party design
house. Physical libraries are also a mix of in-house developed and third-party provided
for generating the layout. Finally, this layout is sent to the foundry to be manufactured.
After manufacturing, the chips are sent to another facility for testing. The testing
process searches for any physical defects and veriĄes the packaged parts to check if the
functionality and performance are under the speciĄcation. Outsourcing manufacturing
and testing to offshore companies are current practices for almost all design companies,
with a few exceptions as Intel. Thus, sensitive information is almost inevitably exposed
to untrusted parties to produce an IC. It is noteworthy that any outsider entity/company
is considered untrusted for security.

TodayŠs reality is that ICs are vulnerable to many hardware-based threats, including
the insertion of hardware trojans, IP piracy, IC overbuilding, reverse engineering, side-
channel attacks, and counterfeiting. Figure 11 presents a systematic classiĄcation of
these threats, their goal, and the location where they occur [16].

In particular, hardware trojans (HTs) are malicious modiĄcations to an IC, where
attackers insert circuitry (or modify the existing logic) for their own malicious pur-
poses [17Ű20,60Ű71]. This attack is (typically) mounted during manufacturing, as the
foundry holds the entire layout and can identify critical locations for trojan insertion.
Third-party IPs can also contain trojans/backdoors that may contain hidden functional-
ities and can be used to access restricted parts of the design and/or expose data that

23



Leak Sensitive
Information

Modify
functionality

Reduce
reliability

Deny
service

Steal
Design

Identify
trade secrets

Hardware
trojan

IP Piracy

Reverse
Engineering

Side-channel
Attack

Counterfeit

IP vendor

Design
Integrator

Manufacturing

PCB
Assembling

Test
Facility

Final user

Attack goal AttackAttack goal Attacker location

Figure 11: Systematization of hardware security around the attack method (adapted from [16])

would otherwise be unknown to the adversary. HTs are designed to leak conĄdential
information, disrupt a systemŠs speciĄc functionality [72], or even destroy the entire
system [73] and have a broad taxonomy [74].

Due to the vast ways an adversary can modify an IC for implementing HTs, they
are classiĄed as an additive, parametric, and subtractive. As the name suggests, an
additive HT inserts extra malicious logic into the circuit. Contrariwise, subtractive
HTs remove part of the existing logic. On the other hand, parametric HTs are very
different from the other types. This family of trojans changes the IC layoutŠs parametric
characteristics, either the geometry of wires and transistors or the dopant polarity of a
few transistors [63]. Thus, parametric HTs add no extra logic resulting in zero overhead
of additional transistors and wires. From this point forward, I will focus mainly on
additive HT. Additive HT is the most extensive type of HT studied in the literature
and is the target of the proposed HT architecture in Chapter 5.

Hardware Trojan

Trigger Payload

Digital Analog

Combinational Sequential

Rare Value(s) Clock 
Synchronous

Sensor

Activity

Event
Synchronous

Digital

Drive Node(s)

Modify 
Memory

Analog

Activity

Timing

Bridging

Figure 12: Additive hardware trojan taxonomy based on trigger and payload implementation
types (adapted from [61]).

An HT architecture comprises a payload that implements the malicious behavior
and a trigger that activates the HT when a speciĄc condition is met. According to the

24



authors in [61], the payload and trigger of an additive HT are classiĄed as shown in
Figure 12. The payload and trigger components can be either digital [19] or analog [60]
and can be realized in diverse manners. An HT trigger is qualiĄed by its stealthiness and
contractability. Then, the ideal trigger is activated when dozens of infrequent events
occur, increasing the HTŠs stealthiness. A highly controllable HT can easily deploy the
attack, but only by the adversary and not through regular use. As mentioned, an HTŠs
payload can be designed with various effects as described in Figure 12.

As HT modiĄes the existing circuit, if the modiĄcation is apparent, one supposedly
could identify the presence of an HT on an IC. However, since ICs are inherently opaque
devices, inspecting their internal components is not a trivial task. Therefore, detecting
HTs of any type is usually a problematic task [75]. Moreover, by design, HTs are
triggered under speciĄc conditions, making them unlikely to be activated and detected
when the circuit operates as intended or when random stimuli are applied [73].

Nevertheless, many techniques for detecting the presence of an HT were proposed [76Ű
85]. These detection techniques are either invasive or non-invasive. Invasive methods
aim to retrieve information about the ICŠs internal components. They are usually
performed by delaminating the IC to reconstruct the layout layers [84], leading to
the destruction of the inspected sample. However, reconstructing the layout layers is
time-consuming and requires precise equipment.

On the other hand, non-invasive techniques leverage the ICŠs physical characteristics
and/or IO signal behavior (i.e., timing and state) [73]. For example, a few proposed
techniques use the notion of path delay Ąngerprint to assess if the circuit was modi-
Ąed [76Ű78]. These techniques will likely detect the HTs that disrupt the circuitŠs data
path. Another class of techniques utilizes power consumption metrics (leakage and
total power) for detecting HTs [79, 80]. These techniques will spot the trojan if the
HT heavily modiĄes the chipŠs power consumption. Chapter 5 presents a more detailed
discussion of additive hardware trojans, their insertion, and detection.

IP piracy and IC overbuilding are illegal ownership claims of different degrees. As
said before, designing an IC requires third-party and in-house developed IPs to complete
the design. Design companies can overuse and copy third-party IPs without the
ownerŠs authorization. Similarly, malicious foundries can manufacture a surplus of ICs
(overbuilding) without the ownerŠs knowledge and sell these parts on the grey market.

Reversing engineering of ICs has been extensively demonstrated in the specialized
literature [84, 86Ű88]. An attacker can identify the technology node and underlying
components (memory, analog, and standard cells), from which he/she can extract a gate-
level netlist, and even a high-level abstraction can be inferred [89]. Reverse engineering
can be effortlessly executed during manufacturing, as the foundry holds the entire layout
and most likely promptly recognizes some of the IP. Moreover, specialized high-level
functionality reconstruction tools can recover the purpose of signals. For example, those
tools can distinguish control from data paths of a Ąnite-state machine from a target
design [88]. In [19], the authors leveraged such toolsŠ output to automate the search
of security-critical nodes. In [87], the authors proposed a similar reverse-engineering
technique to recover the coefficients of an obfuscated FIR Ąlter.

After manufacturing, Ű when ICs are already packaged and deployed Ű reverse
engineering is more laborious but can still be executed by a knowledgeable adversary.

25



Similar to inspecting an ICŠs internal components, an adversary can delaminate the
chip in order to retrieve the layout layers. Reconstructing the layout layers from a
physical sample is divided into three steps: depacking, delayering and imaging, and
image post-processing. The chip must Ąrst be depacked by wet-chemical or mechanical
means to access the die. Then, after recovering the bare die, the IC has to be delayered,
and each layer has to be optically captured using a scanning electron microscope (SEM)
or focused ion beam (FIB). Finally, the digitalized layer images have to be stitched and
vectorized to retrieve the layout representation of the chip. Note that this process is
yet to be fully automated [84], resulting in a highly time-intensive task prone to errors.

An ICŠs operating physical characteristics, such as timing, power consumption,
electromagnetic radiation, and even sound, can be used as a side channel to indirectly
reveal information that should be internal to the IC. Hence, malicious elements can
exploit such a side channel to leak secret information from inside an IC. Since side-
channel attacks can leak data from privileged parts of a system without permission,
the most sought-after targets for side-channel attacks are embedded crypto cores.
Many authors have already demonstrated that side-channel attacks can break the most
important cryptographic algorithms in use today [90,91].

Counterfeits

Out-of-spec/
Defective

Aged

Non
          Functional

New

Recycled

Fabrication
        Outside Contract

Performance

Reverse
     Engineered

Pirated IP

          Manufacturer
Reject

Fake 
           Certifications

Forged 
    Changelog

          Silicon Time 
Bomb
Backdoor

Forged
DocumentationRecycled Remarked TamperedClonedOverproduced

Figure 13: Taxonomy of counterfeit electronics (adapted from [59]).

According to [59], counterfeit components are classiĄed into seven distinct categories,
as illustrated in Figure 13. Recycled, remarked, out-of-spec/defective, and forged
documentation are inherent after-market problems where products are offered by parties
other than the original component manufacturer or authorized vendors. These cases
are highlighted in red. On the other hand, overproducing, cloning, and tampering are
problems faced during the design and/or fabrication of ICs. These cases are highlighted
in blue. It is important to realize that these threats, including hardware trojans, could be
avoided if a trusted manufacturing scheme was in place. For example, the old Japanese
semiconductor business model from the 1980s discussed in Section 2.1 most likely did
not face any of the threats highlighted in blue in Figure 13. However, the escalating
cost and complexity of semiconductor manufacturing on advanced technologies made
owning an advanced foundry unfeasible for design companies, which now tend to adopt
the fabless business model [42].

Governments recognized access to advanced ICs as necessary for their domestic
economy and national security. Currently, the US and Europe are making an effort
to manufacture advanced semiconductors inside their borders [92, 93]. Access to a
domestic manufacturing process arguably could mitigate some hardware-based threats
during manufacturing. However, bringing the manufacturing inside their border does

26



not Ąx a major security Ćaw in the IC supply chain; third parties still are responsible for
the manufacturing operations. Hence, a shift in the IC supply chain, as experienced in
the 1980s, is unlikely to happen in the following decades.

Consequently, security experts are striving to develop creative countermeasures
for all known hardware-based threats. Noteworthy defense techniques include Logic
Locking [23Ű28], IC CamouĆaging [30Ű32], and, Split Manufacturing [21,22].

G1
G2 G3 G4

G5

G6

I0
I1

I2
I3
I4

I5

O1K2K1
key1 key2

Figure 14: Example of a circuit locked using two XOR key gates, K1 and K2.

Logic locking is a defense technique for locking the design intent behind a key.
Additional gates are inserted to prevent the correct propagation of signals unless the
correct key is applied to these key gates. An example of Logic Locking is illustrated
in Figure 14. For the example circuit to operate as intended, the user has to apply
the correct key value to the key1 and key2 signals. The key is either programmed
at a trusted facility or stored in a tamper-proof memory. According to [26], Logic
Locking can protect against adversaries located at the design company, foundry, test
facility, and end-user. For example, an IP provider may hide their circuits sold to design
companies, protecting against their technology and overuse theft. On the other hand,
design companies can utilize Logic Locking against IP theft, overproduction, or hinder
the insertion of meaningful hardware trojans.

IC CamouĆage is a technique to disguise the functionality of standard cells or parts
of a digital circuit. An attacker holding the victimŠs layout can extract an unnamed
gate-level netlist with the original functionality. Techniques such as Logic Locking do
not prevent netlist extraction but hide the functionality behind a key. On the other hand,
IC CamouĆage can hide the functionality of the gates at the layout level. For example,
in [31], the authors camouĆaged NAND and NOR gates by making their layouts very
similar. Thus, making those gates indistinguishable, preventing the extraction of the
netlist. Therefore, IC CamouĆage can increase resilience against attackers located at
the foundry. However, if the camouĆage techniques only leverage look-alike cells, the
countermeasure might not be enough for an adversary located at the foundry.

Split Manufacturing promotes a hybrid solution between trusted and untrusted
fabrication. Because of the nature of the IC structure, it is possible to split the circuit
into two parts before manufacturing, the FEOL and BEOL (see Figure 5). Since the
FEOL contains all the transistors, a high-end foundry Ąrst manufactures this layer.
Then, to complete the circuit, a possibly low-end and low-cost foundry manufactures
the remaining BEOL on top of the FEOL. Splitting the layout hides the complete
design from the high-end untrusted foundry since the FEOL does not contain any wire
connection. Thus, only the low-end trusted foundry has complete information about
the design. Split manufacturing can combat all threats highlighted in blue in Figure 13.
A more detailed discussion of Split Manufacturing is presented in Chapter 4.

27



2.4 Computing Platforms and Hardware Accelerators

Modern SoCs, over the years, have become more powerful and energy efficient, enabling
all sorts of applications that once were deemed unfeasible. Such optimized SoCs are
possible not only because of denser and faster ICs. In addition, low-power techniques [94]
combined with specialized hardware architecture, i.e., hardware accelerators [95], are
also a signiĄcant factor in optimized SoC development. Following, I am going to discuss
hardware accelerators, their types, advantages, and weaknesses.

General-purpose processing architectures can handle diverse tasks with a solid
programming eco-system making it user-friendly. However, these standard processing
units cannot efficiently execute some particular tasks. Hence, to improve energy
efficiency, SoCs integrate domain- or application-speciĄc hardware accelerators and
general-purpose CPUs [96]. Thus, the application running at the CPU offloads speciĄc
computing tasks onto the hardware accelerators, enabling greater energy efficiency while
maintaining high performance. However, because these accelerators are very complex
and designed for a speciĄc system or task, their reusability is greatly diminished. Thus,
they are costly, time-consuming, and resource-intense for development.

Such design challenges are overcome by implementing hardware/software co-design
techniques or general-purpose hardware accelerators. Instead of offloading an entire
application to a hardware accelerator, co-design divides the task into two components;
the software component computed by the CPU and the hardware component computed
by the accelerator. Thus, reducing the accelerator complexity and speeding up the
design process. Furthermore, according to [97], an accelerator can be either loosely or
tightly coupled. Loosely coupled accelerators are implemented outside the CPU, which
is relatively easier to integrate. Nevertheless, loosely coupled accelerators can suffer
performance penalties from the communication interface. In comparison, the tightly
alternative is embedded into the CPU architecture as application-speciĄc functional
units [98], without interface problems. However, it requires modiĄcations to the
instruction set architecture (ISA) 2 of the CPU.

Typically, commercial CPUs do not allow modiĄcations to the ISA. On the other
hand, co-design is adopted by several open-source hardware initiatives, such as RISC-
V [100], IBM OpenPOWER [101], Sun OpenSPARC [102], and Linux Foundation CHIPS
Alliance Project [103]. Thus, a designer can create his own tightly coupled accelerator
hardware by utilizing a free and open ISA, such as the RISC-V. In [97], the authors
demonstrated an example of the tightly alternative using RISC-V. In addition, they
extended the RISC-V ISA to support post-quantum cryptography instructions, speeding
up considerably the encryption process.

General-purpose accelerators provide users with a Ćexible platform, similar to CPUs,
but very efficient for domain-speciĄc tasks. Typically, these accelerators can beneĄt
from modern programming languages with practical supporting tools for programming,
debugging, and deployment. Furthermore, they can be highly conĄgurable to Ąt many
use cases. Examples of general-purpose accelerators are Ąeld programmable gate arrays
(FPGA), GPUS, and Tensor Processing Units (TPUs) [104].

FPGA is a programmable fabric that utilizes look-up tables (LUTs) for implementing

2The ISA defines the interface between software and hardware [99].

28



logic functions. In some cases, FPGAs can outperform CPUs; however, it is unlikely to
outperform ASICs. The compelling feature of FPGAs is the reconĄgurability on demand.
In the hardware accelerator context, chip designers can integrate a CPU with an FPGA
instead of designing a whole new chip and only having to create the accelerator program.
Moreover, the hardware accelerator inside the FPGA can be upgraded at any point in
the chipŠs life span. Thus, due to the Ćexibility of the FPGAs, they can be implemented
outside of a CPU. This conĄguration is a loosely coupled implementation, with the
FPGA as the hardware accelerator. To address the performance loss from the interface,
the FPGA can also implement the CPU and the hardware accelerator in a single chip.

Recently a new concept called embedded FPGAs (eFPGA) [105,106] brings more
Ćexibility to the usage of FPGAs. Embedded FPGAs are IP cores integrated into an
ASIC or SoC and have recently gained ground due to their wide range of markets and
applications. For example, in the context of hardware accelerators, a designer can use
an eFPGA connected to a CPU as a tightly coupled accelerator or even as part of a
hardware accelerator. Therefore, eFPGA provides programmability and can accelerate
time to market. According to [106], the market share of eFPGA is expected to approach
the Ągure of 10 billion dollars in 2023. Today, users can acquire FPGA-based SoCs [107]
or FPGA IPs for integration into their SoCs. Figure 15 illustrates an FPGA-based SoC,
where the programmable logic represents the FPGA part.

Figure 15: Example of FPGA-based SoC – Zynq-7000s (from [107]).

Traditionally, GPU architectures were developed, as the name suggests, to manipulate
computer graphics and image processing. Because of the nature of image processing,
GPU architectures focus on specialized massively parallel many-core processors that take
advantage of Thread-Level Parallelism (TLP) to handle highly parallelizable applications
in a Single-Instruction Multiple Threads (SIMT) paradigm. Thus, GPUs naturally
evolved into an efficient general-purpose accelerator for High-Performance Computing

29



(HPC). Similarly to FPGAs, the user can use rapidly available commercial GPUs
for applications other than computer graphics or image processing. Moreover, the
GPU vendor NVIDIA developed a parallel programming language for GPUs for general
purpose processing [8]. Typically, commercial GPUs are sold as discrete cards connected
externally to the CPU. However, this conĄguration does suffer from performance loss
from the communicating interface. On the other hand, highly optimized interfaces can
achieve outstanding throughput, such as the PCI Express 4 [108]. Nonetheless, the
vendor AMD introduced the concept of accelerated processing units (APUs) [98]. An
APU incorporates the advantages of a CPU and a GPU into a single package. Therefore,
GPUs are a perfect Ąt for HPC applications such as oil exploration, bioinformatics, and
the thriving AI and Machine Learning (ML) domains [109].

HPC, AI, and ML applications are computationally hungry and feasible only with
capable hardware. Due to the rise in popularity of these domains, the demand for chips
capable of efficiently executing these workloads is sharply increasing. According to
the report in [110], the market share of AI chips is forecast to grow at 36.5% CAGR
from 2021-2026. Thus, Google introduced a new type of computing core called TPU
and NVIDIA a similar TPU architecture called Tensor Core. TPUs are ASICs that can
efficiently solve complex matrix and vector operations at ultra-high speeds and are used
speciĄcally for deep learning workloads. On the other hand, NVIDIA embeds Tensor
Cores in their commercial GPUs, enabling mixed-precision computing to accelerate
throughput while preserving accuracy. These cores reportedly achieve very-high speeds
in HPC and AI workloads [111].

The hardware architecture itself can be a weakness, where many attacks that take
advantage of how the hardware architecture is implemented were recently demon-
strated [112,113]. For example, the power of electromagnetic (EM) side-channel attacks
against desktop CPUs, mobile CPUs, and FPGAs have been extensively studied [114].
However, not only these architectures but almost all hardware architectures are poten-
tially exploitable. Thus, many other hardware architectures that handle sensitive data
and/or are essential to critical systemsŠ functionality are yet to be studied for security
vulnerabilities. In [114], the authors described an EM side-channel attack against a
GPU AES implementation, and there is no GPU-speciĄc countermeasure for such an
attack. Therefore, attacks similar to the one described in [114] are a potential threat
to modern SoCs and hardware accelerators. In Chapter 3, the threats against GPUs are
discussed in more detail, and a GPU architecture for aiding the research of GPU-speciĄc
countermeasures is proposed.

30



3 Secure GPU-like ASIC Accelerators

This chapter discusses open-source GPUs state-of-the-art and their applications. A
literature review revealed the need for open-source GPU architectures for ASIC platforms.
The FGPU, a GPU architecture for FPGA, is among the few GPU architectures available.
This chapter describes the adaptation of the FGPU for ASIC and how its architecture
was optimized. The new architecture is a GPU-like accelerator for ASIC termed G-GPU.
Moreover, a fully automated tool for generating G-GPUs termed GPUPlanner was
developed. GPUPlanner permits the user to modulate the G-GPU regarding the number
of compute units (CUs) with the option of power gating each CU individually. For
controlling the power switches, a dynamic power controller is also available. Thus,
GPUPlanner enables low-power, design for reliability, and security applications.

This chapter has its content based on the following publication:

[IV] T. D. Perez, M. M. Gonçalves, L. Gobatto, M. Brandalero, J. R. Azambuja, and
S. Pagliarini, "G-gpu: A fully-automated generator of gpu-like asic accelerators,"
in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 544Ű547, 2022

3.1 Introduction and Research Gap

New computer applications, especially AI, keep pushing the need for more energy-efficient
hardware architectures [96]. For many years, designers have been utilizing application-
and domain-speciĄc accelerators as the standard choice for achieving energy efficiency.
Those accelerators were designed and tailored according to a speciĄc workload. Examples
of hardware accelerators are crypto cores for efficient encryption/decryption [5], and
GPUs [6Ű8] for handling massive parallel computations.

As discussed in Section 2.4, GPU architectures are specialized to handle highly
parallelizable applications in a SIMT paradigm used for graphics applications. However,
due to the GPU architecture, its application in HPC applications was a natural shift.
These applications have a broad range, applicable in bioinformatics, oil exploration, AI,
and ML domains [109]. For instance, several supercomputers in the top500 rank utilize
GPUs from the vendor NVDIA [115].

Nonetheless, research in GPU architectures still needs to be improved because of the
need for modern open-source GPU architectures at a sufficiently low level of abstraction.
For instance, only FlexGripPlus [116] and FGPU [117] conĄgurable open-source GPUs
are available in the literature. Furthermore, the FlexGriPlus architecture is based on
the decade-old G80 architecture from the vendor NVIDIA, which was never deployed to
an FGPA board. On the contrary, the FGPU is explicitly designed for being deployed
to FGPA platforms. Consequently, designing, conĄguring, and implementing modern
GPU architectures for ASIC are still a challenge to be tackled by the literature Ű ASIC
platforms represent challenges far from those in FGPA design. However, ASIC platforms
can achieve higher performance compared with FPGAs. Hence, all vendors design their
GPUs for ASIC.

In order to bridge this gap, the GPUPlanner is proposed, an automated and

31



open-source framework for generating ASIC-speciĄc GPU-like accelerators as IP Ű this
general-purpose accelerator architecture is termed G-GPU. GPUPlanner helps design-
ers generate GPU-like accelerators through user-driven customization and automated
physical implementation. For example, G-GPU has a series of user-deĄned parame-
ters to customize the computation characteristics (e.g., number of processing units),
memory access (e.g., cache sizes), and power gating implementation (e.g., insertion
of power switches to speciĄc CUs). Therefore, GPUPlanner provides designers with
high scalability, facilitating the search for the appropriate G-GPU IP for their systems.
On top of that, GPUPlanner explores smart memory and on-demand pipeline insertion
implementation strategies to optimize even further the G-GPU architecture.

3.2 G-GPU Baseline: the FGPU

As the baseline for G-GPU architecture, the FGPU architecture is utilized. The FPGU
is an open-source GPU-like soft processor, highly conĄgurable, to accelerate workloads
that Ąt in the SIMT paradigm, developed for FPGA platforms. However, porting
RTL design descriptions that initially targeted FPGAs to ASIC platforms is possible,
which requires precise adaptations, especially to the memory hierarchy. In addition to
the GPU-like open-source HDL code, this architecture has a supporting LLVM-based
compiler. As a result, existing OpenCL kernels can be compiled, providing designers
with the ability for fast software development, debugging, and deployment. Moreover,
the FGPU architecture can scale up to 64 processing units (and beyond with additional
support), being deeply conĄgurable regarding operations, instructions, and memory
access.

The FPGU architecture overview is presented in Figure 16. As illustrated, the main
component of FGPU is the CU, a SIMD machine of 8 identical Processing Elements (PE0
- PE7) capable of spatially replicating up to eight times. A CU has the computation
capacity to run up to 512 work items (i.e., a computational kernel in OpenCL), supporting
full thread divergence and allowing each work item to take a different path in the control
Ćow graph. Furthermore, work items are grouped into Wavefronts (WFs) executed
concurrently in a CU. Then, WFs are combined into Workgroups (WGs) that share a
program counter and are assigned to a particular CU. Therefore, the FGPU architecture
is deeply parallelized. Notice that the number of CUs and PEs in each CU are entirely
conĄgurable when implementing the FGPU.

In addition, the FGPU architecture has a Runtime Memory (RTM) and a Data
cache. The FGPU data cache is a central, multi-port, direct-mapped, and write-back
system capable of simultaneously serving multiple read/write requests. Likewise, several
data movers are integrated to parallelize the data traffic on up to four AXI Data
interfaces [118]. A single AXI Control interface on the hardware side controls the
whole FGPU architecture. Then, only standard OpenCL_API procedures are required to
control the FGPU on the software side. The width and depth of the AXI Data interface
can also be conĄgured.

The FGPU architecture was adapted in the literature to Ąt different application
domains. One example of adaptation proposed by the authors in [119] specialized in
the FGPU architecture for persistent deep learning (PDL). The authors added new

32



Memory Controller

Runtime Memory

A
X

I D
at

a
In

te
rfa

ce
A

X
I C

on
tro

l
In

te
rfa

ce

CRAM

Ctrl Regs

LRAM
G

lo
ba

l M
em

or
y

Co
nt

ro
lle

r

Ca
ch

e

W
F 

Sc
he

du
le

r

CU

W
G

D
isp

at
ch

er

...
...

Reg.
File

...

PE0 PE7

Reg.
File

...

Figure 16: FGPU architecture with memories colored according to the layouts displayed in Figs.
3 and 4 (from [9]).

instructions and enhancements to the microarchitecture and compiler. These adaptations
reportedly speed up 56 to 693x in PDL applications. However, the resulting code with
the modiĄcations is not publicly available.

Another GPU-like general-purpose accelerator is MIAOW [120], based on the AMD
Southern Islands architecture and its ISA. However, the authors described the MIAOW
architecture using behavioral C/C++. Thus, it is not fully synthesizable. In [121], the
authors proposed the Scratch architecture, a MIAOW extension with the automatic
identiĄcation of speciĄc requirements of each application kernel. In addition, the
authors proposed a tool for generating application-speciĄc and FPGA-implementable
trimmed-down GPU-like architectures. MIAOW is another example of GPU-like general
purpose for FPGAs, which also has yet to make the source code publicly available.

Therefore, to bridge the literature gap, I proposed a tool termed GPUPlanner for
automatically generating tapeout-ready domain-speciĄc accelerators based on GPU-like
architectures, making all source codes publicly available. Therefore, this is the Ąrst
work to propose a similar framework. Furthermore, the proposed framework facilitates
a novel and comprehensive design-space exploration (DSE) of GPU-like architecture
regarding logic and memory components.

Compared to related works, the proposed architecture targets ASIC Ćows rather
than FPGAs. Because in FPGA designs there is little to no control over how memories
are inferred, GPUPlanner DSE allows signiĄcantly more complex designs due to the
possible different parameters for the memory hierarchy to explore. On top of that, the
proposed design and framework are fully synthesizable, tapeout-ready, and available to
the community for further investigations, different from MIAOW and Scratch.

3.3 GPUPlaner Tool and Framework

Since the FGPU was originally designed targetting FPGAs, the experiments started
by migrating its architecture to ASIC. Thus, the FGPUŠs architecture requires a few
modiĄcations. FPGAŠs compilers can automatically infer memories from the RTL; thus,

33



FGPUŠs code describes all memory blocks as regular FFs. Differently, in ASIC, memory
blocks are hand-instantiated IPs instead of inferred ones. Therefore, for migrating the
FGPU code, all memory modules must be clearly deĄned and instantiated accordingly.
In this work, the implementations for the experiments utilize a commercial 65nm CMOS
technology. The provided foundryŠs memory compiler has the option for dual-port
low-power SRAM IPs, with address sizes ranging from 16 to 65536 words and word
sizes from 2 to 144 bits.

A thorough DSE exercise can achieve the best PPA ratio possible for the G-GPU.
First, performance was analyzed to verify the maximum operating frequency, i.e., when
the setup and hold timing slacks for the critical path are above zero. The maximum
operating frequency found during the logical synthesis for the standard version is 500MHz.
Here, the standard version is a version without any optimization proposed in this work.
Moreover, G-GPU versions with the same number of CUs have similar performance
because the CU itself is the bottleneck for performance in G-GPUŠs architecture. As
expected, the starting point of the critical path for the versions without any optimization
is a memory block inside the CU.

The delay in accessing the stored data from memories is proportional to their size.
Thus, a larger memory, either in the number of words or word size, displays a higher
delay for accessing stored data when compared with a smaller memory. Therefore,
dividing memory blocks that belong to critical paths is an efficacious strategy to increase
the designŠs performance [122] Ű called smart memory. For example, memories can be
divided by the number of words, the size of the word, or both. However, the impact on
performance when halving the number and size of words simultaneously depends on the
technology.

Figure 17: Simplified example of smart memory technique by halving the size of the word.

Applying the smart memory strategy requires a few adaptations in the RTL code.
After locating the candidateŠs memories for the division, the new modules must be
adequately instantiated. The input/output data or addresses from the new memory
modules require concatenation to maintain the same connections. In our framework,
this task is automated to accelerate the optimization process. GPUPlanner has a feature
to perform automatic memory division. Figure 17 depicts an example of smart memory
division by halving the size of the word. The read cycle delay has two parts, the access
time and data setup. When the word size is divided by two, the access time decreases

34



by almost 25%3. Smart memory takes advantage of this characteristic to lower the time
necessary to access stored data, increasing the designŠs performance. In the GPUPlanner
framework, the designer only has to point to the candidateŠs memories and the number
of divisions for each memory, then the smart memory division is automatically performed.
An extra feature along memory division, GPUPlanner implements pipeline on demand
to improve the performance.

Figure 18: Example of a header power switch schematic (left panel) and placement (right
panel).

In addition to the memory division strategy, the GPUPlanner framework also has the
option to power gate selected CUs. The power gating allows the complete shutdown
of the logic inside the CU. Therefore, GPUPlanner users can use power gating as a
low-power strategy, design for reliability, or as a security feature. Our framework uses a
coarse-grain header-style power switch provided by the foundry. Figure 18 shows an
example of the schematic on the left panel and the placement on the right panel of a
header power switch. As illustrated in Figure 18, when the signal Enable is de-asserted,
the header power switch disconnects the Virtual VDD from the VDD line, shutting off
the gates connected to Virtual VDD. Furthermore, coarse-grain power switches utilize
lower metal layers to cut the power distribution. In our framework, the utilized power
switches break the power distribution at the metal layer M1, highlighted in blue in
Figure 18. Moreover, physical synthesis tools can automatically implement power gating
intent, using UniĄed Power Format (UPF) [94] to conĄgure the power switch rules
and deĄne the power domains. Thus, GPUPlanner users only have to point to which
CU they want to power gate, deĄne the power domain sets, and its implementation is
automatically performed.

Another GPUPlanner feature readily available is a dynamic power controller block
for power-gated designs. This controller can dynamically turn on and off CUs and pair
CUs to work with the same workload. All the controlling is performed on the software
side by special instructions added to G-GPU ISA. Figure 19 illustrates the dynamic
power controller block. This block is instantiated inside the WG dispatcher to control
the number of CUs available, multiplex the workload requests for CUs working in pairs,

3The timing presented in Figure 17 are from a commercial memory compiler. However, the
actual time figures are not allowed to be disclosed. For that reason, here, these figures are
normalized in terms of generic time units.

35



Figure 19: GPUPlanner generic dynamic power controller block diagram.

and enable the power switches. These tasks are controlled by two new instructions
added to the ISA: (1) the power status of each CU; (2) adjacent CU working in pairs.
The power status is controlled by one bit where logic 0 turns the CU off, and logic 1
turns on the CU. Thus, 8 bits of the instruction are allocated where the bit index is
related to a speciĄc CU. Only pairs of adjacent CUs can share the same workload for
the mirroring workload feature, i.e., CU #1 sharing the workload with CU #2. Then, 4
bits of the instruction are allocated to enable the mirroring feature.

GPUPlanner is an open-source tool to generate G-GPU IPs from RTL to GDSII
automatically; its framework is highlighted in Figure 20. Firstly, a GPUPlanner user
has to deĄne the desired speciĄcation from the G-GPU. The proposed architecture can
conĄgure the number of CUs ranging from 1 to 8 and the option to power gate any CU
grouped in different power domains. A G-GPU with more CUs has more computation
capacity. Also, the designer has to specify the desired operating frequency of the
G-GPU.

After the designer sets the speciĄcations for his/her requirements, one or more
versions of G-GPU can be feasible. With a single push of a button, GPUPlannerŠs
framework performs logic and physical synthesis of all G-GPU versions. After each
logic and physical synthesis, the resulting PPA has to be checked to guarantee that
the design is under the initial speciĄcation. If the G-GPU is out of speciĄcation, the
designer should adjust it and restart the process. Finally, all the generated layouts are
ready to be integrated into a system as a tapeout-ready IP.

3.4 Results and Discussion

After a thorough DSE exercise of the GPUPlanner, 12 versions of the G-GPU with
a worth PPA trade-off in a general manner were found. These versions have 1, 2, 4,
and 8 CUs, and each variant was optimized to run at 500MHz, 590MHz, and 667MHz.
Table 1 describes the physical characteristics of each version considered. As expected,
the G-GPU sizes grow linearly with the number of CUs. On the other hand, during the
optimization phase (see Figure 20), improving G-GPUŠs performance does not increase
area linearly with the frequency increment. For example, increasing the frequency from
500MHz to 590MHz increases the area by an average of 10%. However, when increasing
from 590MHz to 667MHz, the area overhead is reduced, increasing only by an average
of 2%. In this optimization stage, the divided memories belong to the top level with

36



G-GPU IP ready for deployment

Design Specification

1. Designer specifications 2. Check technology library 3. Generate N Possible 
G-GPU RTLs

4. Logical Synthesis; timing 
and power analysis

5. Check if the design 
is under specification

6. Floorplanning and
 power planning

7. Place and route; timing 
and power analysis

8. Check if the design is under 
specification

Repeat optimization in case during step 5 or 8 the 
design is not under specification

1. Find critical path 2. Apply smart memory 
division 3. Add pipelines 

if needed

Repeat from step 4

Logical Synthesis

Optimization phase

Physical Synthesis

G
PU

Pl
an

ne
r

Figure 20: GPUPlanner’s G-GPU generation flow (adapted from [9]).

lower implementation density Ű hence, the small jump in area overhead. Nonetheless, for
applications that do not prioritize power consumption, the versions running at 667MHz
are a good Ąt for having a negligible increase in area. Therefore, the G-GPU architecture
has potential scalability facilitated by the GPUPlanner framework.

Conventionally, power gating is used for low-power applications. However, it can
be used in design for reliability and security applications. For example, shutting off
faulty or compromised circuit parts to isolate a problem can be beneĄcial. Thus, the
optional power gating provided by GPUPlanner enables several use cases other than
the traditional low-power design. Those use cases can be essential for an optimal GPU,
especially for security, where recently a few GPU-speciĄc side-channel attacks have
been demonstrated without countermeasures [114,123,124].

According to the authors in [114], power or electromagnetic (EM) side-channel
attacks against desktop CPUs, mobile CPUs, and FPGAs have been extensively studied.
However, modern GPUs are rarely taken into account. In [114], the authors demonstrated
the effectiveness of an EM side-channel attack against a GPU AES implementation.

37



Table 1: Characteristics of 12 different GGPU solutions generated by our tool after logic
synthesis in Cadence Genus.

#CU & Freq. Total Area (mm2) Memory Area (mm2) #FF #Comb. #Memory Leakage (mW) Dynamic (W) Total (W)
1@500MHz 4.19 2.68 119778 127826 51 4.62 1.97 2.055
2@500MHz 7.45 4.64 229171 214243 93 8.54 3.63 3.77
4@500MHz 13.84 8.56 437318 387246 177 16.07 6.88 7.14
8@500MHz 26.51 16.39 852094 714256 345 30.79 13.33 13.86
1@590MHz 4.66 3.15 120035 128894 68 4.73 2.57 2.66
2@590MHz 8.16 5.34 229172 221946 120 8.73 4.63 4.81
4@590MHz 15.03 9.72 436807 397995 224 16.41 8.70 9.02
8@590MHz 28.65 18.49 850559 737232 432 31.25 16.81 17.40
1@667MHz 4.77 3.26 120035 130802 71 4.65 2.62 2.72
2@667MHz 8.27 5.45 229172 222028 123 8.72 4.69 4.87
4@667MHz 15.15 9.83 436807 398124 227 16.43 8.75 9.07
8@667MHz 28.69 18.60 848511 730506 435 30.21 19.10 19.76

They argue that the literature lacks GPU-speciĄc countermeasures for GPU-based
cryptographic implementation, which should be investigated in practice. As mentioned,
the literature also needs an ASIC open-source GPU architecture, arguably contributing
to the lack of such studies. Therefore, the proposed G-GPU architecture can aid the
research of GPU-speciĄc countermeasures for practical applications.

Due to the physical characteristics of the CU, inserting power switches does not
entail area or performance overhead4. The only requirement from the user side is the
implementation of a controller for the power switch signals. For example, a power
controller can dynamically scale the number of CUs available accordingly to the workload.
Thus, saving power when a workload can run with fewer CUs. Even more, with a
few adjustments on the WG dispatcher (see Figure 16), the workload can be mirrored
between sets of CUs and work similarly to a TMR technique. Thus, a voter plus the
power controller can select the desired set of CUs to work similarly to a TMR. For
example, suppose a user can implement a G-GPU with 8 CUs with four sets of power
domains with 2 CUs each. Then, each set can work in lockstep to detect any fault
in the circuit. Moreover, the voter can potentially detect the presence of a hardware
trojan inserted in a speciĄc CU.

Power side-channel attacks without the aid of SCTs require acquiring a tremendous
amount of long power traces. Thus, a power controller can turn on the G-GPU only
when executing a task, potentially reducing the chance of such power side-channel
attacks by reducing the timing window of the power/EM traces. In [114], the authors
needed to collect thousands of signiĄcant EM traces to retrieve the crypto key from
a GPU AES application. Alternatively, tasks can be executed each time in a different
CU while the other remains shut off. Thus, if an HT compromises a particular CU,
this strategy can diminish the attackŠs success rate. However, these examples of power
gating are application and user-speciĄc Ű GPUPlanner does not implement particular
applications of power gating. More importantly, GPUPlanner allows users to perform
power gatings controlled by a generic dynamic power controller, which can be tweaked
in the G-GPU architecture according to their needs and at runtime.

For the physical synthesis, was chosen six versions of the G-GPU: (1) 1CU@500MHz,

4Power gating can introduce area and performance overhead. For high-density designs, the
insertion of power switches will increase the area. In addition, power-on latency can degrade
the design’s performance. Suppose the power gatings are not carefully performed; IR drop due
to the power switches can also hinder the performance.

38



(2) 1CU@500MHz with power switches, (3) 1CU@667MHz, (4) 1CU@677MHz with
power switches, (5) 8CU@500MHz, and (6) 8CU@667MHz. The Ćoorplan of the G-GPU
is broken into two partitions, one with the CU(s) and one with the rest of the blocks
(see Figure 21). For the CUs, the density was set to 70%. Then, the rest of the
logic was placed and routed at the top level, and the top level size was set to Ąt all
routing wires for the connections rather than achieving high densities. Because the
top level comprises three modules and does not have as many memory blocks as the
CU, achieving a high density of utilization was possible. Thus, the top has an average
density of 75%. Nonetheless, this Ćoorplan strategy allows designers to scale the G-GPU
architecture without any extra effort regarding the number of CUs. Once a CU partition
is fully placed and routed, it can be implemented in versions with more than 1 CU by
cloning the partition in the Ąnal Ćoorplan of the design. Moreover, the user can easily
create a collection of different CU layout blocks and scale the Ćoorplan regarding the
number of CUs for different application scenarios.

7150 um

56
00

 u
m

7550 um

58
00

 u
m

3200 um

26
00

 u
m

22
00

 u
m

2700 um

(1) 1CU@500MHz
(3) 1CU@677MHz

(5) 8CU@500MHz (6) 8CU@677MHz

CU Optimized
Memories

Untouched 
Memories

MCTRL Optimized 
Memories

TOP Optimized
Memories

Figure 21: Layout comparison between the minimum and maximum performance of G-GPUs
with 1 CU (top) and 8 CUs (bottom).

The layouts for the versions with 1 and 8 CUs without power switches are depicted
in Figure 21. Only the layouts with the same number of CUs are in size scale. The block
memories divided for augmenting the performance are highlighted in green for the CU
partition, yellow and pink for the general memory controller (MCTRL), and blue for the
top. Note how different the Ćoorplan is between the version with optimizations running
at 667MHz and without optimizations running at 500MHz. Extracting maximum
performance requires strategic memory block placement, hence, the difference in the
Ćoorplan.

Figure 22 illustrates the G-GPUs with power gating. Note that the layout size is the
same between the version with and without power gating, and the memory placement is

39



Table 2: Comparison of power consumption for 1CU@500MHz and 1CU@677 versions with
and without power gating.

Dynamic Power (W) Leakage (µW)
# CU & Freq. Power Gating # Power Switches Total Always-on CU Total Always-on CU Power Switch

1@500MHz Yes 942 1.768 0.36 1.408 385 89.5 292 0.503
1@500MHz No 0 1.753 - - 384 - - -
1@667MHz Yes 1110 2.966 0.737 2.22 522.4 157.8 364 0.6
1@667MHz No 0 2.957 - - 520.6 - - -

Always-on Cell 

CU Power Domain Cells

Power Switch

VDD

VDD

VDD

VDD

VDD

VDD

VSS

VCU

VSS

VCU

VSS

VCU

Figure 22: Layout comparison between G-GPU (2) 1CU@500MHz and (4) 1CU@677MHz with
power gating.

slightly different. Due to the number of memory blocks and their placement, the edges
without pinouts usually are not populated with cells. In the case of the G-GPU, those
edges are where was placed the power switches in column fashion, as highlighted in
red in Figure 22. As described before, the power switches break the power distribution
at M1 metal. In Figure 22, the always-on power net is VDD, and the CU partition
power net is VCU, with a shared ground VSS. Therefore, the power switch connects
to VDD, VSS, and VCU. The connection between VDD and VCU is controlled by the
signal enable (see Figure 18). The overhead difference between with and without power
gating is only perceived when all power domains are turned on. However, there is only
a negligible difference in leakage. The power results of the G-GPUs with and without
power gating are described in Table 2. Even with a large number of power switches
(more than a thousand for (3) 1CU@667MHz), the difference in leakage is less than 1
µW. On the other hand, when the G-GPU is idle, the user can turn off the entire CU
partition. The power reduction comparison between a version with and without power
gating depends on how the design handles the clock. If the clock is always running
without any clock gating, the reduction is a part of the dynamic plus the leakage power.

40



Figure 23 illustrates CU partition dynamic power versus switching activity 5 for (2)
1CU@500MHz and (4) 1CU@677MHz. As described in Section 2.2, dynamic power
comprises internal and switching power. Note that the largest portion of the dynamic
power is from internal power. Hence, even if the CU is not running at capacity (idle),
the consumption is still high. Therefore, the power reduction achievable when power
gating is massive, more than 2W for the (4) 1CU@677MHz. On the other hand, if the
design has the means to stop the CU clock, the power reduction difference when power
gating is only the leakage Ű approximately 370µW for the (4) 1CU@677MHz.

 0

 500

 1000

 1500

 2000

 2500

 3000

0 10 20 30 40 50 60 70 80 90100

P
o

w
e

r 
(W

)

Switching Activity (%)

Internal Power
Switching Power

 0

 500

 1000

 1500

 2000

 2500

 3000

0 10 20 30 40 50 60 70 80 90 100
P

o
w

e
r 

(W
)

Switching Activity (%)

Figure 23: Compute unit partition dynamic power versus switching activity for (2) 1CU@500MHz
(left panel) and (4) 1CU@677MHz (right panel).

A performance comparison was made between the popular RISC-V architecture
to evaluate the G-GPU as an ASIC accelerator. For the comparison, the OpenHW

group Core-V cv32e40p RISC-V was utilized [125]. Furthermore, the logic synthesis
was done utilizing the same technology for both architectures (commercial 65 nm
CMOS). Since the G-GPUŠs maximum operation frequency is 667MHz, both RISC-V
and G-GPU operating frequencies are set to 667MHz for a fair comparison. The RISC-V
was implemented with 32kb of memory, and the G-GPU with 1/2/4/8 CUs. Seven
micro-benchmarks from the AMD OpenCL SDK were chosen for the experiments.
The payload size is set as the largest that the RISC-V compiler can handle without
crashing. In the same way, for the G-GPU, the payload sizes are chosen to make its
computing units fully utilized. For the evaluation, a pessimistic approach for the G-GPU
is considered to compare the performance of the different-input size applications. For
example, one could increase RISC-V application input sizes by multiplying its cycle
count by the G-GPU/RISC-V input size ratio. These results are shown in Figure 24.

The Ąrst experimental evaluation compares raw performance between G-GPU and
RISC-V for the exact input sizes. As illustrated in Figure 24, G-GPU with 8 CUs is
up to 233.4 times faster than RISC-V. However, a higher speed-up magnitude is only
achieved for applications that take advantage of high parallelism. G-GPU can be as
low as only 1.2 times faster than RISC-V for applications with low to no parallelism.
However, as G-GPU is a domain-speciĄc ASIC accelerator, such results are expected
once it will not becomes the best option for general-purpose applications. Therefore, a
user interested in implementing a G-GPU as an accelerator can utilize these provided
data to ponder if this type of architecture is a good Ąt for his/her system, considering

5Switching activity is set to emulate the circuit operation when test vectors are not available.
The switching activity is how much a signal switches in relationship with the clock, e.g., 20%
of switching activity means signals switch one time per 5 clock cycles.

41



 0

 10

 20

 30

 40

 50

mat_mul copy vec_mult fir div_int xcorr parallel_sel

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

S
p
e
e
d
-u

p
 d

e
ra

te
d
 b

y
 a

re
a

S
p
e
e
d
-u

p

1CU - Area Ratio=06.5

2CU - Area Ratio=11.6

4CU - Area Ratio=21.4

8CU - Area Ratio=41.0

1CU - Raw Speed-up

2CU - Raw Speed-up

4CU - Raw Speed-up

8CU - Raw Speed-up

Figure 24: Speed-up over RISC-V.

only the raw speed-up.
The measured area is factored into performance speed-up for the second experimental

evaluation. For that, the previously measured speed-up is derated by dividing the area
ratio between G-GPU and RISC-V (G-GPU/RISC-V). The G-GPU with 1 CU has an
area that is 6.5 times larger than the RISC-V, and it achieves the best increase in
performance per area of 10.2 times the RISC-VŠs. On the other hand, G-GPU with 8
CUs has an area that is 41 times bigger than RISC-VŠs, thus achieving a performance
per area of 5.7 times faster than RISC-VŠs. This trend happens mainly because data
dependency and global memory communication limit parallelism. Thus, the provided
increased processing power of a G-GPU conĄguration with more CUs.

Currently, the GPUPlanner can generate tapeout-ready GPU-like ASIC accelerator
IPs with the Ćexibility to choose the number of CUs, layout size, frequency of opera-
tion, and power gating implementation. Moreover, the results show that the G-GPU
performs better than a general-purpose accelerator like the RISC-V in speciĄc scenarios.
Furthermore, the GPUPlanner can still be improved to include additional features such
as the power gating controller and architecture featuring more than 8 CUs. Finally,
the GPUPlanner tool is publicly available to users interested in utilizing the already
implemented features and users interested in improving the GPUPlanner capabilities
even further [126].

42



4 Split Manufacturing: Attacks and Defenses

This chapter discusses the Split Manufacturing technique state of the art. From a
literature review, I identiĄed that the Split Manufacturing technique research was mature
and relevant for having a survey. Thus, I present in this chapter a reduced version of the
survey published in [22]. It is noteworthy to mention it was the Ąrst published survey on
the topic. In this survey, I comprehensively classiĄed every attack against split layouts
and every defense technique for improving even further split layouts security. On top of
that, I addressed a controversial topic (efficacy of the Split Manufacturing technique)
among the recent publications. Finally, this survey is very important for future research
on Split Manufacturing, being a focal point to start from for security experts interested
in the topic.

This chapter has its content based on the following publication:

[I] T. D. Perez and S. Pagliarini, "A survey on split manufacturing: Attacks, defenses,
and challenges," IEEE Access, vol. 8, pp. 184013Ű184035, 2020

4.1 Introduction

As discussed in Sections 2.1 and 2.3, ensuring the integrity and trustworthiness of ICs has
become more challenging [59] over time. Mainly because of the restructuring of the IC
supply chain, which is now very complex and highly globalized. Moreover, counterfeiting
and IP infringement are growing problems in the electronics sector. For example, in
Europe, seizures of counterfeit electronics products increased by almost 30% when
comparing 2014-2016 to the 2011-2013 period [58]. Legitimate electronics companies
reported about $100 billion in sales losses every year because of counterfeiting [127].

In Section 2.3, I discussed several techniques that have been proposed to combat
threats during the ICŠs life cycle individually. However, very few of these techniques
directly address the lack of trust in the manufacturing process. Nevertheless, Split
Manufacturing emerged to promote a hybrid solution between trusted and untrusted
manufacturing. Around 2006, Carnegie Mellon and Stanford universities prepared a
white paper proposing the technique to draw Defense Advanced Research Projects
Agency (DARPA) [128] attention. Later, the technique was picked by IARPA, which
then launched the Trusted IC program [129].

In Split Manufacturing, as already discussed in Secion 2.3, the key concept is to split

the circuit into two, the FEOL and BEOL parts. The FEOL contains the transistors
and perhaps the Ąrst couple of metal layers, and the BEOL contains the remaining
ones. Then, these parts can be manufactured in different foundries. The FEOL is
assumed to be Ąrst manufactured in a high-end modern foundry to access advanced
transistors. After, the BEOL is stacked on top of the FEOL by a second, most likely
low-end, foundry. The stacking process requires electrical, mechanical, and/or optical
alignment techniques to secure the connection between the two.

As mentioned before in Section 2.1, only a few foundries are capable of manufacturing
advanced ICs (see Figure 4). Consequently, almost all design companies have to
outsource their IC manufacturing to these untrusted foundries. This outsourcing

43



practice exposes their designs against threats that may occur during manufacturing.
Nonetheless, design companies can apply the Split Manufacturing technique to protect
their designs, thus, combating threats such as overproduction, cloning, and tampering
(these threats are highlighted in blue in Figure 13). By splitting the design into FEOL
and BEOL, Split Manufacturing protects the design by hiding sensitive data from the
untrusted foundry. In advanced technologies, the FEOL contains the transistors and
possibly a few metal layers of ultra-thin metals, which are the most complex part of
a CMOS process to manufacture [130]. Thus, it is logical to utilize the few high-
end foundries for manufacturing the FEOL layer, despite being untrusted foundries.
For manufacturing the remaining metal layers, a low-end foundry may be capable of
completing the IC by stacking the BEOL on top of the FEOL. Split Manufacturing was
successfully demonstrated in [131Ű133], where designs were manufactured with ~0% of
faults and reportedly have performance overhead of roughly 5%. These demonstrations
show that Split Manufacturing, in principle, is feasible. Thus, design companies can use
the technique while outsourcing their IC manufacturing to advanced foundries without
fully exposing their designs.

Nonetheless, applying Split Manufacturing has to be done with caution. The
techniqueŠs success depends on the compatibility between the technologies used to
build the FEOL and BEOL. A layout, in theory, can be split at any layer if the chosen
layer presents a good interface between FEOL and BEOL. However, since advanced
technologies utilize the dual-damascene fabrication process, the layout can only be split
into metal layers [134], as the FEOL cannot terminate in a via layer. This is because the
dual-damascene process of metal deposition Ąlls via-metal pairs simultaneously. Thus,
via-metal pairs (e.g., V1 and M2) must mandatorily be built in the same facility.

Since after splitting the layout, the FEOL ends on metal, the Ąrst bottom layer
on the BEOL is a via layer. Hence, staking the BEOL is only possible if there is a
way to land the via on the FEOL uppermost layer without violating any DRC of both
technologies. Thus, both technologies are compatible with each other, enabling Split
Manufacturing. As discussed in Section 2.2, DRCs guarantee manufacturability and
functionality. These rules include geometric characteristics of the metal layers, such
as minimum enclosure, width, spacing, and as well, density checks, ERC checks, and
others. For advanced technologies, designers have a rich selection of via shapes. Thus,
the technologies are compatible if at least one via shape is valid.

Mx

Vx

Mx+1

EN.T.x

VW.T.x

MW.U.x

EN.T.x

VW.T.x

Figure 25: Compatibility rules between FEOL and BEOL (adapted from [131]).

According to [131], compatibility between two technologies can be generalized by

44



enclosure rules as in Equation 3, where MW.U.x is the minimum width of Mx on an
untrusted foundry, VW.T.x is the minimum width of Vx on a trusted foundry and EN.T.x
is the minimum enclosure on the trusted foundry. These rules are illustrated in Figure
25, where the left side of the image portrays a cross-section view, and the right side
shows the top view. According to Figure 25, the minimum enclosure width, Mx.EX.Vx
must be compatible between the two foundries. Nonetheless, Equation 3 is not sufficient
for advanced technologies, as it does not consider the complex rule for vias and line
endings (enclosure from one side, two sides, three sides, T-shaped/hammerheads, and
many others).

MW.U.x ≥ V W.T.x+(2EN.T.x) (3)

The Split Manufacturing design Ćow is similar to the regular one illustrated in
Figure 6. However, it presents some challenges and slight modiĄcations to the design
Ćow. For instance, if two different technologies are utilized for generating the layout,
a hybrid process design kit (PDK) is required for the physical synthesis. Since no
company offers a Split Manufacturing service, the hybrid PDK must be created in-house.
Furthermore, depending on the metal layer where the layout is to be split, it may affect
the existing IPs. For example, standard cell IP typically requires two metal layers, while
memory IP may utilize 4 to 5 metals. Thus, using such IPs limits the metal layout in
which the layout can be split. If that is the case, standard cells and memories must be
re-designed to enable the split in lower metal layers. Hence, this presents a signiĄcant
challenge, making Split Manufacturing much harder to execute.

Hiding part of the BEOL layer from the untrusted foundry is argued to expose
enough information to be exploited by a potential attacker. The BEOL connections can
be effectively retrieved from an attack against the FEOL by making educated guesses.
Nevertheless, the success of the guessing process depends heavily on the amount of
information the attacker possesses. Thus, the assumed threat model determines the
efficiency of attacks against FEOL. The literature describes two distinct threat models:

• Threat model I: an attacker located at the untrusted foundry holds the FEOL
layout and wants to retrieve the BEOL connections.

• Threat model II: an attacker located at the untrusted foundry has the information
of the entire gate-level netlist in their hands. That netlist is assumed to be handed
over by a malicious observer. Nonetheless, the attacker inside the foundry only
holds the FEOL and wants to retrieve the BEOL connections [135].

As the primary purpose of Split Manufacturing is to expose the minimum of informa-
tion possible to the untrusted foundry, the second threat model completely nulliĄes any
security introduced when splitting the circuit. For example, reverse engineering a layout
while holding the gate-level netlist becomes a trivial task if the attacker only holds
the FEOL or the complete layout. Moreover, assuming an attacker inside a third-party
company knows such sensitive data (e.g., gate-level netlist) challenges the integrity
of the design company itself. Even more severe, if a rogue element inside the design
company can steal the gate-level netlist, other design representations could be equally

45



stolen as well, including the complete layout (i.e., FEOL plus BEOL layers). Thus, the
vulnerability described by threat model II is so severe that Split Manufacturing has
virtually no reason to be applied. Accordingly, for the remaining manuscript, threat
model I is the focus for discussing Split Manufacturing. Nevertheless, all related works
that assumed threat model II were covered in the conducted survey.

From the threat model I, an attacker holding the FEOL is interested in recreating
the entire design as close as possible, ideally the same as the original. For that, he/she
must retrieve the BEOL connections. Typically, it is assumed that the attackers are
skilled and work within the untrusted foundry in some capacity. Hence, they have an
excellent knowledge of the technology utilized to generate the victimŠs layout. Therefore,
extracting the incomplete gate-level netlist from the FEOL layout is a trivial task [136].

Split Manufacturing presents a promising technique to enhance the security of ICs
in this era of fabless design companies. However, the technique still faces some serious
challenges:

Logistical challenge: currently, Split Manufacturing is not integrated into the IC
supply chain. Herefore, Ąnding foundries with compatible technologies willing to
work together is not trivial. Thus, a commercial Split Manufacturing solution is
unlikely to be created soon.

Technological challenge: even within compliant technologies, non-negligible over-
heads can be introduced if they are vastly different6. In the worst-case scenario,
it can make routing impossible. Thus, this fact narrows down the technology
choices available and the feasibility of particular layers as candidates for splitting.

Security challenge: the attained security of straightforward Split Manufacturing is
still under debate. Attacks against the FEOL can be effective, where the hidden
connections can be retrieved.

In the following sections, related works in the literature about Split Manufacturing
are categorized as attacks and defenses. For attacks, authors propose modiĄcations of
existing attacks to improve their effectiveness and new types of attacks. In defenses, the
authors proposed new techniques to be applied along Split Manufacturing to enhance
its security level.

4.2 Attacks on Split Manufacturing

Many attacks against the FEOL have been proposed, most of which are termed proximity

attacks [138Ű144]. The attacks are compiled in Table 3, where is described the threat
model used, the type of attack, the novelty of the attack, benchmarks, and the size
of the circuits utilized to assess the attacks. Furthermore, a few results were selected
from each work described in Table 4. For better contrast, these results are selected for
the smallest and larger circuits available. Following, I present a brief discussion about
attacks against the FEOL. Finally, for a thorough and complete discussion, I direct the
reader to [22].

6For a thorough discussion and silicon results on BEOL-related overheads, please refer
to [137].

46



Table 3: Threat Models, Attacks, and Metrics.

Work Year Threat
model

Attack type Novelty Benchmark suite(s)
Largest
circuit size
(gates)

Avg. circuit
size (gates)

[138] 2013 I Proximity Attack Based on Proximity ISCAS'85 3.51k 1288

[139] 2016 II Proximity
Placement and routing proximity
used in conjunction

ISPD'11 1.29M 951k

[140] 2018 I Proximity Network-Flow-Based with Design
Based Hints

ISCAS'85 & ITC'99 190.21k 9856

[141] 2018 I Proximity
Proximity Attack Based on Ma-
chine
Learning

ISPD'11 1.29M 951k

[142] 2019 I Proximity Proximity Attack Based on Deep
Neural Network

ISCAS'85 & ITC'99 190.21k 9856

[143] 2019 I SAT SAT Attack without Proximity In-
formation

ISCAS'85 & ITC'99 190.21k 9856

[144] 2019 I SAT
SAT attack dynamically adjusted
based on proximity information

ISCAS'85 & ITC'99 190.21K 9856

As previously alluded, when implementing the IC, EDA tools focus mainly on
optimizing PPA. Hence, the solution found by the placement algorithm often places
connected cells close to one another to reduce area, wire length, and delay. Consequently,
the missing BEOL connections could be found by assessing the input and output pins
in proximity, hence, the name proximity attack. However, the number of missing
connections increases the probability of making a wrong connectivity guess. In turn, a
circuit split into a lower metal layer has a high level of security. In [138], the authors
reported the Ąrst proximity attack against the FEOL. They utilized the distance between
output-input pairs as a metric to recover the missing BEOL connections (i.e., a proximity
attack). The authors reported an average effectiveness of 96% of Correct Connection
Rate (CCR) across all the benchmarks considered.

G1
G2

G3
G4

G5

G6

I0
I1

I2

I3
I4
I5

O1

O2

Partition A

Partition B

O3

I6

Target Pin
Candidate Pin

Figure 26: Example of a partitioned circuit (from [22]).

To understand the hints left behind by EDA tools, consider as an example the
partitioned circuit illustrated in Figure 26. The circuit contains two partitions, A and
B, each with three gates. Not considering connections within the partitions, partition
A has three inputs and one output pin, while partition B has three inputs and two
output pins. The partitions are connected to each other by one input-output, where the
output pin of gate G2 is connected to one of the inputs of gate G3. Let us assume the
output pin from partition A Px,A,out is a candidate for its corresponding input pin from
partition B Px,B,in. From the perspective of EDA tools, those pins will most likely be
placed as close as possible. Therefore, using this insight, an attacker may recover the

47



missing connection in the FEOL layout. The authors in [138] have argued that their
proposed attack Ćow is successful because it can leverage the following ŞhintsŤ provided
by the EDA tools:

Hint 1 - Input-Output Relationship: partition input pins are connected either to
another partition output pin or to an input port of the IC (i.e., input-to-input
connections are excluded from the search space).

Hint 2 - Unique Inputs per Partition: input-output pins between partitions are
connected by only one net. If a single partition output pin feeds more than one
input pin, the fan-in and fan-out nodes are usually placed within the partitions
(i.e., one-to-many connections are ruled out from the search space).

Hint 3 - Combinational Loops: only speciĄc structures normally utilizes com-
bination loops (e.g., ring oscillators). These structures are straightforward to
identify. Thus, in most cases, random logic does not contain combinational loops
Ű connections that would lead to it can be eliminated from the search space.

Nonetheless, missing connections can be correctly retrieved by identifying the closest
pin from a list of possible candidates. Utilizing the hints described above, the attacker
can create a list of possible candidates. CandidatesŠ pins are separated into unassigned
inputs and outputs pins. Hence, a metric based on the minimum routing distance can
be used to connect the unassigned pins.

Based on the work presented in [138], other similar attacks towards the FEOL were
developed. A more advanced proximity attack is proposed by [139], where the authors
take into account other metrics besides the distance of the unassigned pins. They
proposed four different techniques to identify a small search neighborhood area for each
candidate. The techniques are called placement proximity, routing proximity, crouting

proximity, and overlap of placement and routing proximity.
On the other hand, the attack proposed in [140Ű142] leverages statistical analysis

to improve the search for the missing connections in proximity attacks. In [140], the
authors proposed a network-Ćow-based attack framework, where the missing connections
are found by solving a min-cost network-Ćow problem [145]. A Machine Learning (ML)
framework was created by the authors in [141] in an attempt to improve the attack
proposed in [139]. Finally, the authors in [142] proposed a more sophisticated deep
neural network, using placement and routing hints as vector and image-based features
to formulate the challenges.

Moreover, the authors in [143,144] proposed an SAT solver-based attack method
derived from CycSat [146]. Contrary to proximity attack, the authors claim their SAT
attack does not need (or depend on) any proximity information or hint from EDA tools.
Instead, they model a interconnect network as key-controlled multiplexers (MUX) with
all the missing connections. Hence, as input to the SAT-solver, the FEOL circuit with
the MUX network is utilized, and a packaged IC serves as an oracle. Thus, the threat
model considered in [143,144] is slightly different; the authors assume that a working
circuit exists.

48



T
ab

le
4
:

B
en

ch
m

ar
k

S
iz

e
an

d
C

o
m

p
ar

is
o
n

o
f

A
tt

ac
k

R
es

u
lt

s.

W
or

k
B

en
ch

m
ar

k
A

tt
ac

k
S

p
lit

L
ay

er
S

iz
e

(I
n

G
at

e
C

o
u

n
t)

M
et

ri
c

R
es

u
lt

[1
38

]
c1

7
P

ro
xi

m
it

y
N

ot
D

eĄ
ne

d
6

C
C

R
(%

)
10

0
[1

38
]

c7
55

2
P

ro
xi

m
it

y
N

ot
D

eĄ
ne

d
35

13
C

C
R

(%
)

94
[1

39
]

S
up

er
bl

ue
1

P
la

ce
m

en
t

P
ro

xi
m

it
y

M
2

84
7k

%
M

at
ch

in
L
is

t
12

.8
4

[1
39

]
S
up

er
bl

ue
1

P
la

ce
m

en
t

P
ro

xi
m

it
y

M
2

84
7k

C
C

R
(%

)
5.

47
9

[1
39

]
S
up

er
bl

ue
1

R
ou

ti
ng

P
ro

xi
m

it
y

M
2

84
7k

%
M

at
ch

in
L
is

t
71

.0
8

[1
39

]
S
up

er
bl

ue
1

R
ou

ti
ng

P
ro

xi
m

it
y

M
2

84
7k

C
C

R
(%

)
0.

65
1

[1
39

]
S
up

er
bl

ue
1

O
ve

rl
ap

(P
&

R
)

P
ro

xi
m

it
y

M
2

84
7k

%
M

at
ch

in
L
is

t
13

.0
5

[1
39

]
S
up

er
bl

ue
1

O
ve

rl
ap

(P
&

R
)

P
ro

xi
m

it
y

M
2

84
7k

C
C

R
(%

)
3.

97
7

[1
39

]
S
up

er
bl

ue
1

C
ro

ut
in

g
P

ro
xi

m
it

y
M

2
84

7k
%

M
at

ch
in

L
is

t
82

.0
8

[1
39

]
S
up

er
bl

ue
1

C
ro

ut
in

g
P

ro
xi

m
it

y
M

2
84

7k
C

C
R

(%
)

0.
65

1
[1

40
]

c7
55

2
N

et
w

or
k-

Ć
ow

B
as

ed
P

ro
xi

m
it

y
N

ot
D

eĄ
ne

d
35

13
C

C
R

(%
)

93
[1

40
]

c7
55

2
P

ro
xi

m
it

y
N

ot
D

eĄ
ne

d
35

13
C

C
R

(%
)

42
[1

40
]

B
18

N
et

w
or

k-
Ć
ow

B
as

ed
P

ro
xi

m
it

y
N

ot
D

eĄ
ne

d
94

24
9

C
C

R
(%

)
17

[1
40

]
B

18
P

ro
xi

m
it

y
N

ot
D

eĄ
ne

d
94

24
9

C
C

R
(%

)
<

1
[1

41
]

S
up

er
bl

ue
1

P
ro

xi
m

it
y

M
6

84
7k

%
M

at
ch

in
lis

t
33

.4
0

[1
41

]
S
up

er
bl

ue
1

P
ro

xi
m

it
y

M
6

84
7k

C
C

R
(%

)
0.

76
[1

41
]

S
up

er
bl

ue
1

M
L

M
6

84
7k

%
M

at
ch

in
lis

t
83

.1
2

[1
41

]
S
up

er
bl

ue
1

M
L

M
6

84
7k

C
C

R
(%

)
1.

91
[1

41
]

S
up

er
bl

ue
1

M
L
-i

m
p

M
6

84
7k

%
M

at
ch

in
lis

t
74

.6
5

[1
41

]
S
up

er
bl

ue
1

M
L
-i

m
p

M
6

84
7k

C
C

R
(%

)
2.

11
[1

41
]

S
up

er
bl

ue
1

M
L
-i

m
p

M
4

84
7k

%
M

at
ch

in
lis

t
75

.4
5

[1
41

]
S
up

er
bl

ue
1

M
L
-i

m
p

M
4

84
7k

C
C

R
(%

)
2.

58
[1

42
]

B
18

D
L

N
et

w
or

k
M

1
94

24
9

C
C

R
(%

)
4.

59
[1

42
]

B
18

D
L

N
et

w
or

k
M

3
94

24
9

C
C

R
(%

)
23

.7
4

[1
42

]
c7

55
2

D
L

N
et

w
or

k
M

1
35

13
C

C
R

(%
)

11
.1

1
[1

42
]

c7
55

2
D

L
N

et
w

or
k

M
3

35
13

C
C

R
(%

)
72

.3
0

[1
43

]
c7

55
2

S
A

T
A

tt
ac

k
N

ot
D

eĄ
ne

d
35

13
L
og

ic
al

E
qu

iv
al

en
ce

(%
)

10
0

[1
43

]
B

18
S
A

T
A

tt
ac

k
N

ot
D

eĄ
ne

d
94

24
9

L
og

ic
al

E
qu

iv
al

en
ce

(%
)

10
0

[1
44

]
c7

55
2

Im
pr

ov
ed

S
A

T
A

tt
ac

k
N

ot
D

eĄ
ne

d
35

13
L
og

ic
al

E
qu

iv
al

en
ce

(%
)

10
0

[1
44

]
B

18
Im

pr
ov

ed
S
A

T
A

tt
ac

k
N

ot
D

eĄ
ne

d
94

24
9

L
og

ic
al

E
qu

iv
al

en
ce

(%
)

10
0

49



4.3 Split Manufacturing Defenses

As discussed in the previous section, attacks against Split Manufacturing can be
effective. Attackers can realistic retrieve the missing BEOL connections. Thus, any
security introduced by Split Manufacturing is annulled if the connections are successfully
recovered. Consequently, several works question straightforward Split Manufacturing.
Several authors have proposed techniques to use together with Split Manufacturing to
increase security against attacks. A list of defense techniques is compiled in Table 5.
This comprehensive list describes the threat model and defense metric utilized in each
work, depending on the attack they are combating. Often defense techniques introduce
heavy PPA overhead. Table 5 also reports if the studied work addressed overheads and
which one was taken into account, such as wirelength overhead (WLO), PPA, and the
number of swaps performed. The defenseŠs results are reported in terms of CCR or
effective mapped set ratio (EMSR). The EMSR metric attempts to quantify the ratio
of the real gate location of a given mapping during a simulated annealing-based attack.

Table 5: Split Manufacturing Defenses.

Work Year Threat
Model

Category Defense Metrics Defense Overheads Presented

[138] 2013 I Proximity Perturba-
tion

Pin Swapping Hamming Dis-
tance

-*

[135] 2013 II Wire Lifting Wire Lifting k-Distance Power, Area, Delay and WireLength
[132] 2014 I Layout Obfuscation Layout Obfuscation for

SRAMs and Analog IPs
- Performance, Power and Area

[147] 2014 I Layout Obfuscation Obfuscation Techniques Neighbor
Connected-
ness and
Entropy

Performance and Area

[148] 2015 I Layout Obfuscation Automatic Obfuscation Cell
Layout

Neighbor
Connected-
ness and
Entropy

Performance, Power and Area

[149] 2015 I Layout Obfuscation Obfuscated Built-in Self-
Authentication

Obfuscation
Connection

Number of Nets

[139] 2016 I Wire Lifting ArtiĄcial Blockage Insertion Number of
Pins

-*

[150] 2016 I Wire Lifting Net Partition, Cell Hidden
and Pin Shaken

- -*

[151] 2017 I Proximity Perturba-
tion

Routing Perturbation Hamming Dis-
tance

Performance and WireLength

[152] 2017 I Wire Lifting Secure Routing Perturba-
tion for Manufacturability

Hamming Dis-
tance

Performance and WireLength

[153] 2017 I Proximity Perturba-
tion

placement-centric Tech-
niques

CCR Performance, Power and Area

[154] 2017 II Proximity Perturba-
tion

Gate Swapping and Wire
Lifting

Effective
Mapped
Set Ratio
and Average
Mapped Set
Pruning Ratio

WireLength

[155] 2018 I Wire Lifting Concerted Wire Lifting Hamming Dis-
tance

Performance, Power and Area

[140] 2018 I Proximity Perturba-
tion

Secure Driven Placement
Perturbation

Hamming Dis-
tance

Power and WireLength

[156] 2018 I Proximity Perturba-
tion

placement and routing per-
turbation

Hamming Dis-
tance

Performance, Power and Area

[157] 2019 I Layout Obfuscation Isomorphic replacement for
Cell Obfuscation

Isomorphic
Entropy

-*

[158] 2019 II Layout Obfuscation Dummy Cell and Wire Inser-
tion

k-security Area and WireLength

* Authors do not present any discussion regarding overhead.

Defenses techniques can be divided into three categories; proximity perturbation,
wire lifting, and layout obfuscation. Proximity perturbation aims to change the location

50



of cell pins to mislead proximity attacks. On the other hand, wire lifting moves routing
wires to upper layers in order to increase the amount of hidden routing. Finally,
layout obfuscation hides the circuit structure from the attacker. Nonetheless, defense
techniques do overlap. For example, a technique that primarily promotes proximity
perturbation may lead to indirect wire lifting. Hence, the categorization of defense
techniques described here is done in the best effort to list state of the art comprehensively.
The results for the Proximity Perturbation and Wire Lifting categories are compiled in
Tables 6 and 7.

As the name suggests, proximity perturbation defenses focus on reducing the hints
introduced by the EDA tools. Thus, this defense category aims to diminish the proximity
information between the exposed pins on the FEOL by making targeted changes to the
circuit and decreasing the success rate of proximity attacks toward Split Manufacturing.

Among many proximity perturbation defense techniques proposed, authors in [138]
utilized pin swapping as a countermeasure against proximity attacks. Partition pins
are rearranged to alter their distance, misleading attackers interested in performing
a proximity attack. For example, if the pins PG3,B,in and PG6,A,in (Figure 26)
are swapped, their connection would be incorrectly guessed during a proximity attack.
Therefore, the authors in [138] propose using hamming distance to quantify the difference
between the outputs from the original netlist and the modiĄed one. For them, the
optimum netlist is arguably achieved for a Hamming distance of 50%, which induces
maximum ambiguity for a potential attacker.

In [140,151,156], the authors also leverage the Hamming distance for their proximity
perturbation techniques. In [151], the authors proposed a routing perturbation-based
defense to increase the Hamming distance. The authors use layer elevation, routing
detours, and wire decoys to achieve the optimum Hamming distance. In parallel, test
principles are used to choose the perturbations. Similarly to the technique proposed
in [138], in [140], the authors proposed placement-based defense. However, differently
from the pin swapping in [138], they consider the incurred wirelength overhead as a metric.
On top of that, they also perform a logic-driven perturbation with a weighted logical
difference (WLD) metric, which incurs a sizeable logical difference from its neighbors.
Considerably different from the other proximity perturbation techniques, in [156] are
proposed modiĄcations on the netlist instead of placement/routing during physical
synthesis. These modiĄcations have the purpose of inserting partial randomization,
and later the proper functionality is restored in the BEOL with the help of correction
cells that resemble switch boxes. Alternatively to Hamming distance, the proximity
perturbation technique proposed in [153] utilizes an information-theoretic metric to
increase the resilience of a layout against proximity attacks. According to [153], the
amount of information revealed by the distance between the exposed pins can be
quantiĄed using mutual information (MI). Then, applying a placement-driven technique
minimizes the amount of exposed information quantiĄed by MI.

The wire-lifting technique approaches the insecurity problem differently than proximity
perturbation. As previously explained, splitting the circuit at lower metal layers increases
the Split Manufacturing security level. Following the same idea, wire lifting proposes
moving wires from the FEOL layer to the BEOL. Thus, increasing the number of exposed
pins and potentially increasing the security level.

51



T
ab

le
6
:

R
es

u
lt

s
fo

r
D

ef
en

se
T

ec
h
n
iq

u
es

b
as

ed
o
n

P
ro

xi
m

it
y

P
er

tu
rb

at
io

n
.

W
or

k
A

tt
ac

k
T

yp
e

B
en

ch
m

ar
k

D
ef

en
se

T
ec

h
n

iq
u

e
D

ef
en

se
M

et
ri

c
D

ef
en

se
O

ve
rh

ea
d

S
p

lit
L

ay
er

R
es

u
lt

w
it

h
-

o
u

t
D

ef
en

se
R

es
u

lt
w

it
h

D
ef

en
se

[1
38

]
P

ro
xi

m
it

y
c1

7
-

H
am

m
in

g
D

is
ta

nc
e

1
S
w

ap
fo

r
50

%
H

D
-*

10
0%

C
C

R
78

%
C

C
R

[1
38

]
P

ro
xi

m
it

y
c7

55
2

-
H

am
m

in
g

D
is

ta
nc

e
49

S
w

ap
s

fo
r

50
%

H
D

-*
94

%
C

C
R

91
%

C
C

R
[1

54
]

P
ro

xi
m

it
y

c4
32

M
od

iĄ
ed

G
re

ed
y

G
at

e
S
w

ap
pi

ng
E

M
S
R

75
%

of
W

L
O

-*
90

%
E

M
S
R

25
%

E
M

S
R

[1
54

]
P

ro
xi

m
it

y
c4

32
M

od
iĄ

ed
G

re
ed

y
G

at
e

S
w

ap
pi

ng
E

M
S
R

30
0%

of
W

L
O

-*
78

%
E

M
S
R

10
%

E
M

S
R

[1
51

]
P

ro
xi

m
it

y
c4

32
-

H
am

m
in

g
D

is
ta

nc
e

3.
1%

W
L
O

fo
r

46
.1

%
H

D
-*

92
.4

%
C

C
R

78
.8

%
C

C
R

[1
51

]
P

ro
xi

m
it

y
c4

32
-

H
am

m
in

g
D

is
ta

nc
e

4.
1%

W
L
O

fo
r

31
.7

%
H

D
-*

62
.8

%
C

C
R

37
.9

%
C

C
R

[1
53

]
P

ro
xi

m
it

y
c4

32
R

an
do

m
M

ut
ua

l
In

fo
rm

at
io

n
<

10
%

P
P
A

M
1

17
%

C
C

R
<

1%
C

C
R

[1
53

]
P

ro
xi

m
it

y
c4

32
g-

co
lo

r
M

ut
ua

l
In

fo
rm

at
io

n
<

10
%

P
P
A

M
1

17
%

C
C

R
2%

C
C

R
[1

53
]

P
ro

xi
m

it
y

c4
32

g-
ty

p
e1

M
ut

ua
l

In
fo

rm
at

io
n

<
10

%
P

P
A

M
1

17
%

C
C

R
6%

C
C

R
[1

53
]

P
ro

xi
m

it
y

c4
32

g-
ty

p
e2

M
ut

ua
l

In
fo

rm
at

io
n

<
10

%
P

P
A

M
1

17
%

C
C

R
4.

5%
C

C
R

[1
53

]
P

ro
xi

m
it

y
c7

55
2

R
an

do
m

M
ut

ua
l

In
fo

rm
at

io
n

<
10

%
P

P
A

M
1

13
%

C
C

R
<

1%
C

C
R

[1
53

]
P

ro
xi

m
it

y
c7

55
2

g-
co

lo
r

M
ut

ua
l

In
fo

rm
at

io
n

<
10

%
P

P
A

M
1

13
%

C
C

R
2%

C
C

R
[1

53
]

P
ro

xi
m

it
y

c7
55

2
g-

ty
p
e1

M
ut

ua
l

In
fo

rm
at

io
n

<
10

%
P

P
A

M
1

13
%

C
C

R
4%

C
C

R
[1

53
]

P
ro

xi
m

it
y

c7
55

2
g-

ty
p
e2

M
ut

ua
l

In
fo

rm
at

io
n

<
10

%
P

P
A

M
1

13
%

C
C

R
3%

C
C

R
[1

40
]

S
A

T
c4

32
B

E
O

L
+

P
hy

si
ca

l
P

er
tu

rb
at

io
n

4.
5%

W
L
O

-*
58

%
C

C
R

56
%

C
C

R
[1

40
]

S
A

T
c4

32
L
og

ic
+

P
hy

si
ca

l
P

er
tu

rb
at

io
n

5.
57

%
W

L
O

-*
58

%
C

C
R

58
%

C
C

R
[1

40
]

S
A

T
c4

32
L
og

ic
+

L
og

ic
W

L
D

1.
68

%
W

L
O

-*
58

%
C

C
R

52
%

C
C

R
[1

40
]

S
A

T
b1

8
B

E
O

L
+

P
hy

si
ca

l
P

er
tu

rb
at

io
n

8.
06

%
W

L
O

-*
15

%
C

C
R

14
%

C
C

R
[1

40
]

S
A

T
b1

8
L
og

ic
+

P
hy

si
ca

l
P

er
tu

rb
at

io
n

1.
70

%
W

L
O

-*
15

%
C

C
R

17
%

C
C

R
**

[1
40

]
S
A

T
b1

8
L
og

ic
+

L
og

ic
W

L
D

0.
61

%
W

L
O

-*
15

%
C

C
R

16
%

C
C

R
**

[1
56

]
P

ro
xi

m
it

y
c4

32
N

et
lis

t
R

an
do

m
iz

at
io

n
H

am
m

in
g

D
is

ta
nc

e
<

10
%

P
P
A

ov
er

al
l

-*
92

.4
%

C
C

R
0%

C
C

R
[1

56
]

P
ro

xi
m

it
y

c7
55

2
N

et
lis

t
R

an
do

m
iz

at
io

n
H

am
m

in
g

D
is

ta
nc

e
<

10
%

P
P
A

ov
er

al
l

-*
94

.4
%

C
C

R
0%

C
C

R

*
S
pl

it
la

ye
r

no
t

sp
ec

iĄ
ed

by
th

e
au

th
or

s.
**

T
he

se
re

su
lt

s
ar

e
co

un
te

r-
in

tu
it

iv
e,

th
e

ap
pl

ie
d

de
fe

ns
e

de
gr

ad
es

th
e

m
et

ri
c.

52



In [135], wire lifting was Ąrst presented considering Split Manufacturing as a 3D IC
implementation [159]. However, their technique is analogous to Split Manufacturing,
even the notion of untrusted FEOL vs. trusted BEOL. Their implementation consists of
two or more independently manufactured ICs, where each IC represents a tier that is
vertically integrated. For integrating the tiers, vertical metal pillars are used Ű referred
to as through-silicon vias (TSVs). In [135], their 3D implementations comprise two tiers;
the bottom tier consists of the transistors and some routing wires (same as the FEOL);
the top tier consists of only routing wires. However, both tiers are manufactured in
untrusted foundries. Nonetheless, the authors in [135] provide a security notion based on
existing multiple mapping between gates in the unlifted and complete netlists. Referred
to as k-security, this metric qualiĄes that gates across the design are indistinguishable
from at least k − 1 other gates. Thus, a defender wants to lift wires in a way to
guarantee the higher k − security possible. Two procedures are proposed to achieve
this goal, one utilizing a greedy heuristic targeted at small circuits (due to scalability
issues) and another that utilizes partitioning to solve those issues.

Now utilizing standard Split Manufacturing, in [139] the authors proposed artiĄcial
routing blockage7 to promote wire lifting. Since commercial EDA tools are built to
provide the best PPA possible, it routes signals preferably in lower metals. Hence, the
insertion of routing blockages can force some signals to be routed above the split layer.
The result is an artiĄcial wire lifting done during the routing stage.

The authors in [152] argued that previous wire-lifting works have largely neglected
Design for Manufacturability (DFM) concerns (i.e., lithography checks, critical feature
analysis, pattern matching, and others). Thus, the authors in [152,160] proposed two
DFM-related wire-lifting techniques; (1) Chemical Mechanical Planarization (CMP);
(2) Self-Aligned Double Patterning (SADP) [161]. The Ąrst technique, CMP-friendly
routing defense, is divided into layer elevation, wire selection, and re-routing. For that,
wires located in dense regions are selected to be re-rerouted in sparse areas. The second
is SADP-compliant, wire-lifting, and re-routing, disregarding the density of the regions,
with the solemn purpose of extending the wireŠs length [162]. Moreover, according
to [152], solving SADP violations by wire extension can also increase security, increasing
the distance between vias.

To avoid the PPA overhead introduced by wire-lifting-based defenses, the authors
in [155] proposed a cost-security trade-off approach, i.e., PPA margins for a given
security budget. The authors claim that their concerted wire-lifting method enables
higher degrees of security while being cost-effective. They utilize elevating cells for
lifting the wires together with three strategies: lifting high-fanout nets, controlling the
distance for open pin pairs, and obfuscating short nets.

Both proximity perturbation and wire-lifting try to hide hints of hidden connection at
FEOL from the attackers. However, even without knowing where all connections are, an
attacker can identify regular structures just by looking at the FEOL layout, perchance
leading to easier attacks. For hiding those regular structures, layout obfuscating is used
to make them indistinguishable.

7This terminology is used in IC design to mean that a specific area should be avoided by
the EDA tool for a specific task. A blockage can be for placement and/or for routing.

53



T
ab

le
7
:

R
es

u
lt

s
fo

r
D

ef
en

se
T

ec
h
n
iq

u
es

b
as

ed
o
n

W
ir

e
L

if
ti

n
g
.

W
or

k
A

tt
ac

k
T

yp
e

B
en

ch
m

ar
k

D
ef

en
se

T
ec

h
n

iq
u

e
D

ef
en

se
M

et
ri

c
D

ef
en

se
O

ve
rh

ea
d

S
p

lit
L

ay
er

R
es

u
lt

w
it

h
o
u

t
D

ef
en

se
R

es
u

lt
w

it
h

D
ef

en
se

[1
35

]
S
A

T
c4

32
W

ir
e

L
if
ti

ng
k-

se
cu

ri
ty

47
7%

of
W

L
O

-*
k=

1
k=

48
[1

39
]

P
ro

xi
m

it
y

S
up

er
bl

ue
1

R
ou

ti
ng

B
lo

ck
ag

e
In

se
rt

io
n

E
[L

S
]

N
ot

P
re

se
nt

ed
M

4
1.

51
1.

77
[1

39
]

P
ro

xi
m

it
y

S
up

er
bl

ue
1

R
ou

ti
ng

B
lo

ck
ag

e
In

se
rt

io
n

F
O

M
N

ot
P

re
se

nt
ed

M
4

12
22

.8
14

33
[1

55
]

P
ro

xi
m

it
y

c4
32

C
on

ce
rt

ed
L
if
ti

ng
H

am
m

in
g

D
is

ta
nc

e
7.

7%
of

A
re

a
A

ve
ra

ge
**

23
.4

45
.9

[1
55

]
P

ro
xi

m
it

y
c4

32
C

on
ce

rt
ed

L
if
ti

ng
C

C
R

13
.2

%
of

P
ow

er
A

ve
ra

ge
**

92
.4

0
[1

55
]

P
ro

xi
m

it
y

c7
55

2
C

on
ce

rt
ed

L
if
ti

ng
H

am
m

in
g

D
is

ta
nc

e
16

.7
%

of
A

re
a

A
ve

ra
ge

**
1.

6
25

.7
[1

55
]

P
ro

xi
m

it
y

c7
55

2
C

on
ce

rt
ed

L
if
ti

ng
C

C
R

9.
3%

of
P

ow
er

A
ve

ra
ge

**
97

.8
0

[1
52

]
P

ro
xi

m
it

y
c2

67
0

C
M

P
-F

ri
en

dl
y

H
am

m
in

g
D

is
ta

nc
e

3.
4%

of
W

L
O

-*
14

.5
%

20
.4

%
[1

52
]

P
ro

xi
m

it
y

c2
67

0
C

M
P

-F
ri

en
dl

y
C

C
R

(%
)

3.
4%

of
W

L
O

-*
48

.1
%

33
.4

%
[1

52
]

P
ro

xi
m

it
y

b1
8

C
M

P
-F

ri
en

dl
y

H
am

m
in

g
D

is
ta

nc
e

0.
4%

of
W

L
O

-*
21

.6
%

27
.6

%
[1

52
]

P
ro

xi
m

it
y

b1
8

C
M

P
-F

ri
en

dl
y

C
C

R
(%

)
0.

4%
of

W
L
O

-*
12

.1
%

10
.7

%
[1

52
]

P
ro

xi
m

it
y

c2
67

0
S
A

D
P

-C
om

pl
ia

nt
H

am
m

in
g

D
is

ta
nc

e
7.

49
%

of
W

L
O

-*
14

.5
%

24
.4

%
[1

52
]

P
ro

xi
m

it
y

c2
67

0
S
A

D
P

-C
om

pl
ia

nt
C

C
R

(%
)

7.
49

%
of

W
L
O

-*
48

.1
%

6.
4%

[1
52

]
P

ro
xi

m
it

y
b1

8
S
A

D
P

-C
om

pl
ia

nt
H

am
m

in
g

D
is

ta
nc

e
4.

64
%

of
W

L
O

-*
21

.6
%

29
.6

%
[1

52
]

P
ro

xi
m

it
y

b1
8

S
A

D
P

-C
om

pl
ia

nt
C

C
R

(%
)

4.
64

%
of

W
L
O

-*
12

.1
%

2.
7%

[1
50

]
P

ro
xi

m
it

y
s5

26
N

et
P

ar
ti

ti
on

in
g

C
C

R
(%

)
N

ot
P

re
se

nt
ed

-*
40

%
**

*
0%

**
*

[1
50

]
P

ro
xi

m
it

y
s5

26
N

et
P

ar
ti

ti
on

in
g

&
C

el
l

H
id

in
g

C
C

R
(%

)
N

ot
P

re
se

nt
ed

-*
40

%
**

*
0%

**
*

[1
50

]
P

ro
xi

m
it

y
s5

26
N

et
P

ar
ti

ti
on

in
g

&
C

el
l

H
id

in
g

&
P

in
S
ha

ki
ng

C
C

R
(%

)
N

ot
P

re
se

nt
ed

-*
40

%
**

*
0%

**
*

[1
50

]
P

ro
xi

m
it

y
s9

23
4.

1
N

et
P

ar
ti

ti
on

in
g

C
C

R
(%

)
N

ot
P

re
se

nt
ed

-*
30

%
**

*
4%

**
*

[1
50

]
P

ro
xi

m
it

y
s9

23
4.

1
N

et
P

ar
ti

ti
on

in
g

&
C

el
l

H
id

in
g

C
C

R
(%

)
N

ot
P

re
se

nt
ed

-*
30

%
**

*
1.

5%
**

*
[1

50
]

P
ro

xi
m

it
y

s9
23

4.
1

N
et

P
ar

ti
ti

on
in

g
&

C
el

l
H

id
in

g
&

P
in

S
ha

ki
ng

C
C

R
(%

)
N

ot
P

re
se

nt
ed

-*
30

%
**

*
1.

5%
**

*

*
S
pl

it
la

ye
r

no
t

sp
ec

iĄ
ed

by
th

e
au

th
or

s.
**

R
es

ul
ts

ar
e

gi
ve

n
as

an
av

er
ag

e
b
et

w
ee

n
M

3,
M

4,
an

d
M

5.
**

*
T

he
se

re
su

lt
s

ca
nn

ot
b
e

di
re

ct
ly

co
m

pa
re

d
w

it
h

pr
ev

io
us

on
es

as
th

e
tr

an
si

st
or

te
ch

no
lo

gy
is

va
st

ly
di

ff
er

en
t.

54



As described in Section 2.2, design companies often use 3PIPs in their ICs, both soft
and hard IPs. Soft IPs usually come in code form, giving the task of implementing to
the customer. However, it also gives the customer Ćexibility to modify the IP to meet
their needs. Therefore, soft IPs are not challenging in a Split Manufacturing design
Ćow paradigm. On the other hand, hard IPs are entirely designed by the vendor and are
technology-dependent.

The security of hard IPs in a Split Manufacturing context is analyzed in [132]. To
assess security, the authors proposed a recognition attack Ćow: an attacker holding the
FEOL layer starts his attack by isolating a target embedded memory or analog hard IP.
From the knowledge of recognizing leaf cells utilizing layout. Since the targeted hard IP
has a high probability of being constructed by compilation of leaf cells, layout pattern
recognition software [163] can be used for trivial leaf-cell identiĄcation. Then, the
attack combines this knowledge with proximity hints to improve the proximity attackŠs
effectiveness. As demonstrated in [132], embedded memories, such as SRAM, are
susceptible to the proposed recognition attack. Defending against recognition attacks
can be achieved by employing layout obfuscation.

Because of the potential success of recognition attacks, many authors proposed layout
obfuscating to improve the resilience of Split Manufacturing [132,147Ű149,157,158].
In [132], the authors proposed a synthesis framework Ćow for obfuscating SRAM and
analog IP. Their synthesis Ćow has three goals to achieve layout obfuscation: randomizing
periphery cells, thus avoiding predictable; minimizing regularized topologies used for
peripheral circuits such as pre-decoders, word line decoders, and sense ampliĄers; adding
non-standard application-speciĄc functions to improve obfuscation and performance.
Moreover, in [147] proposed four techniques for layout obfuscation, (1) limited standard-
cell library, (2) smart-dummy cell insertion, (3) isomorphic cells, and (4) non-optimal
cell placement. Their goal is to increase Time To Evaluate (TTE). The authors in [147]
argue that if a TTE is high enough, an adversary would be discouraged from reverse
engineering the IC.

The other layout obfuscation techniques are presented in Table 5, following the same
principle described above. Finally, for a complete discussion and results presentation,
we direct the reader to [22].

4.4 Discussion

Despite our effort to present the results of the many studied papers in the fairest way
possible, it is clear that the hardware security community lacks a unified benchmark

suite and/or a standard criteria for assessing results. Instead, researchers often use
benchmark suites that are popular in the Test community but have no real applicability
in security. For example, most benchmark suites (e.g., ISCAS'85) used for assessing
Split Manufacture have no crypto cores, which are fundamental for security research.
In [164], the authors proposed a game-theoretic framework to evaluate the existing Split
Manufacturing attacks and defenses. The authors concluded that larger circuits are
secured by naïve Split Manufacturing. Hence, larger circuits do not require additional
defense mechanisms. Consequently, the community would primarily beneĄt from using
circuits that better represent the IC design practices of this decade, where IPs often

55



have millions of gates, and ICs have billions of transistors.
It is noteworthy to mention the disparity in the attack models proposed so far. As

previously pointed out, threat model II is too strong, almost nullifying any secure sense
introduced by Split Manufacturing. However, the real problem is how complicated
is deĄning a threat model to establish the attackerŠs capabilities in the best manner
possible. By deĄnition, formalizing the capabilities of an attacker requires understanding
his motivations, technical proĄciency, and availability of resources. In threat models
that underestimate the attackerŠs capabilities, useless defense strategies can be devised
and assumed to be effective. On the other hand, in case the attackerŠs capabilities
are overestimated, convoluted defense strategies might be employed, leading to unnec-
essary PPA overheads. Thus, deĄning a precise threat model is a challenge for Split
Manufacturing and many other techniques that promote obfuscation.

Another topic that has led to no consensus is whether an attacker can use a partially
recovered netlist. For instance, let us assume a design that instantiates the same block
multiple times. If one of the blocks is correctly recovered, a cursory inspection of the
structure may allow the attacker to recover all other instances of the same block. The
same line of thinking can be applied to datapaths and some regular cryptographic
structures. An analysis of the functionality of the recovered netlist could be combined
with existing attacks for further improvement of correctly guessed connections.

Many of the works studied in this survey have yet to demonstrate their approach in
silicon Ű only 15% have a silicon demonstration. Hence, the hardware security community
should strive to validate not only Split Manufacturing techniques but many other security
approaches in silicon as often as possible. In the case of Split Manufacturing, however,
Ąnding two foundries willing to diverge from their established practices could be next
to impossible. For this reason, only a small percentage of the reported works have
validated their techniques in silicon.

56



5 Hardware Trojans Design and Insertion

This Chapter discusses the hardware trojan threat during IC manufacturing. The
literature has many hardware trojan demonstrations, a few even in silicon; however, not
a single one disclosed how their hardware trojan is inserted. Hence, in this Chapter,
I will demonstrate a full framework for designing and inserting hardware trojans in
Ąnalized layouts. To validate this framework, I developed a silicon prototype comprising
four crypto cores altered with a hardware trojan. For inserting the hardware trojans,
I leverage the engineering change order (ECO) feature, which is readily available in
commercial EDA tools. Furthermore, I propose a side-channel trojan capable of leaking
multiple bits into a single power signature reading to demonstrate the capabilities of
the proposed ECO framework. Finally, a reverse engineering technique is discussed to
Ąnd critical nodes to connect the hardware trojans.

This Chapter has its content based on the following publications:

[II] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, "Side-channel trojan insertion - a
practical foundry-side attack via eco," in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1Ű5, 2021

[III] T. Perez and S. Pagliarini, "A side-channel hardware trojan in 65nm cmos with
2µW precision and multi-bit leakage capability," in 2022 27th Asia and South
PaciĄc Design Automation Conference (ASP-DAC), pp. 9Ű10, 2022

[V] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, "A pragmatic methodology for blind
hardware trojan insertion in Ąnalized layouts," in 2022 International Conference
on Computer-Aided Design (ICCAD), 2022

[VI] T. D. Perez and S. Pagliarini, "Hardware Trojan Insertion in Finalized Layouts:
From Methodology to a Silicon Demonstration," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2022

5.1 Introduction

Because of the current IC supply chain organization, as discussed in depth in Chapter 2,
the trustworthiness of an IC can be potentially affected Ű a foundry (or a rogue element

within the foundry) could manipulate the design for their own malicious purposes [59].
Hence, the IC is exposed to the many fabrication-time attacks studied in recent
decades [165]. Furthermore, the many defense techniques to combat these threats
discussed in the previous Chapters are not suitable for the large-scale production of ICs.
Because of either practically [22] and/or insufficient security guarantees [16].

One of the many fabrication-time attacks an IC can potentially suffer is a malicious
modiĄcation, i.e., an HT [16,73]. For example, HTs (see Section 2.3) are designed to
leak conĄdential information, disrupt a systemŠs speciĄc functionality, or even destroy
the entire system (referred to as a time bomb). Various HTs have been studied
recently [64Ű67,69,70], demonstrating the potential threat of this type of attack.

57



Constraints

  RTL

Technology           

Library

Logic 

Synthesis
Gate-level 

Netlist

Place & 

Route 

Timing 

Signoff 

Physical 

Verification
Original 

GDSII

Test, 
Assembly & 

packaging

Constraints

Modified 

GDSII

Design Phase (in-house) Attack
Manufacturing & Chip Finishing 

(3rd Party)

Figure 27: A typical IC design flow. Highlighted in red is the stage where a rogue element
may mount an attack (modified from [17]).

Moreover, an HT can be specialized to assist SCAs Ű often referred to as side-channel
HTs (SCTs). The Ąrst side-channel HTs for assisting power SCAs was proposed in [64],
called ŞMalicious Off-chip Leakage Enabled by Side-channelsŤ (MOLES). In this Chapter,
I propose a new SCT for assisting power SCAs. With the aid of SCTs, power SCAs can
immensely reduce their attack time as no further processing is required. However, the
disadvantage of SCTs is their invasive nature. Inserting an SCT requires a modiĄcation
of the circuit at fabrication time. Modifying a Ąnalized layout might seem challenging;
however, a capable attacker can perform it, as demonstrated later in this Chapter by
the proposed framework to insert the SCT or any additional HT in highly dense designs
without hindering the target circuit. On top of that, the framework utilizes EDA tools
to automate the insertion of additional malicious logic, hence, DRC-aware and having a
relatively fast runtime.

The proposed SCT attack utilizes a similar model as the threat model I, described in
Chapter 4. However, with a few modiĄcations. The principal adversary is also a rogue
element inside the untrusted foundry utilized by a design company to manufacture their
designs. In this attack, the adversary aims to o insert malicious logic into the Ąnalized
layout handed over by the victim. Here I emphasize that the attack occurs before the
fabrication (see Figure 27), and a single rogue element inside the foundry is sufficient
to perform the proposed attack. The foundries or a few companies licensed by the
foundries provide the standard cell library to the design companies to implement their
designs. Therefore, it is assumed that an attacker inside the foundry can access all
technology and cell libraries and distinguish individual gates and their functionality.

Additionally, in the SCT attack threat model, the attacker can identify the presence
of a crypto core in a layout, which is a reasonable assumption, especially for well-known
AES implementations that display regularity (due to the round-based key schedule
structure). Finally, notice that to perform such an attack, the adversary does not need
to understand the entire victimŠs design, nor is there a need for it. Instead, it is assumed
he/she needs only to recognize the layout/structure of a single crypto core within a
larger design, in line with the assumptions made in [65,67].

Furthermore, the adversary also: 1) is versed in IC design, 2) enjoys access to modern
EDA tools, and 3) has no means to make radical modiĄcations to the circuit (e.g.,
adding new IOs or making changes in the clock domains). Therefore, with the help of
the inserted logic in the form of an SCT, the attacker will attempt to leak conĄdential
information via a power signature. The preferred target of this type of attack is crypto
cores [67, 68]; hence, this is also the choice of target to demonstrate our SCT insertion
framework. As the proposed SCT attack deals with power signature reading, stopping

58



some part of the clock delivery, or even entirely, would be highly beneĄcial for the
attack. However, the attacker is assumed to not know about the clock domains or clock
distribution in general. Therefore, synchronizing and controlling the HTŠs trigger to
stop the clock delivery is not considered feasible for the SCT threat model, nor is the
addition of an external trigger controlled by an IO. Thus, the attacker has no direct
access to the trigger or payload of the trojan.

A typical IC physical implementation Ćow is described in the left portion of Figure
27. The attack occurs after the victimŠs layout in GDSII format is sent for fabrication
(see the red portion of Figure 27). Suppose the attacker had access to all of the
victimsŠ data required to generate the layout (i.e., RTL, netlists, constraints, and many
others). In this case, he/she could replicate the physical implementation Ćow to achieve
a layout similar to the one created by the victim, yet now containing his malicious logic.
This effort is theoretically possible but largely unpractical. Although replicating the
physical implementation is possible, this scenario is not a threat model considered in
the literature. Finally, the SCT attack threat model assumes that the attacker only has
access to the Ąnalized layout. Design companies have to hand in their Ąnalized layout
to the foundry for fabrication. Usually, the layouts require some pre-processing steps
before the start of the fabrication, which a foundry employee handles. Thus, it is during
this period that the attack can be mounted.

5.2 Side-Channel Trojan and its Insertion via ECO

The proposed SCT architecture is an additive hardware trojan to aid a side-channel
attack with a digital sequential synchronous event trigger and a digital payload that
drive nodes (see Figure 12). The SCT architecture is designed to create artiĄcial power
consumption, which can leak sensitive information through this extra induced power. In
order to retrieve the leaked bits, the SCT has to create the extra power in a controlled
manner. Because the most signiĄcant portion of an ICŠs power consumption comes
from the switching activity (dynamic power), a great candidate to be a controlled power
sink is a structure with a controllable frequency of operation.

An example of a power sink with a controllable frequency of operation is a ring
oscillator (RO) with dynamically adjustable stages, as illustrated in Figure 28. The
RO delay stages of the proposed architecture are broken into branches controlled by
Nleak leaking bits. Each branch has two active paths: a direct connection to the next
branch or a series of delay cells. Therefore, each set of Nleak leaking bits has a speciĄc
power consumption increment. This artiĄcial power consumption created by the RO
is similar to a pulse-amplitude modulation technique, with an order equal to 2Nleak .
The architecture illustrated in Figure 28 is an example of the proposed RO architecture
capable of leaking two bits per power signature reading, i.e., Nleak = 2. The active
pathsŠ conĄguration is described in Table 8, where the leaking bits become branch
selectors and are referred to as S0 and S1.

An attacker has to design our SCT with a dual-sided constraint in mind: (1) the
induced dynamic power consumption has to be large enough to retrieve the leaking bits
while (2) minimizing the increase in leakage power. The Ąrst constraint is regarding
the effectiveness of the attack; the largest the induced power amplitude, the easiest it

59



Nd1 Delay

Cells
Nd2 Delay

Cells

Nd3 Delay

Cells

Ni Inverter Cells

S0

S0 S1

S1

S1   S0

Clock 

Divider

Ring 

Oscillator
Trojan 

Controller
System_clock

Reset

Trigger

Key

Enable

Select

GDSII
Netlist 

Extraction

Frequency 

Estimation

Power 
Analysis

Trojan 

Design

ECO 

Flow
Modified 

GDSII

Clock_sct

Enable

Nd4 Delay

Cells

Figure 28: The proposed trojan insertion methodology for an SCT capable of leaking 2 bits
per power signature reading (modified from [17]).

Table 8: Ring oscillator active path configuration

S0 S1 Delay Cells Inverter Cells Freq.
0 0 ND1 Ni High
1 0 ND1 +ND2 Ni Mid-high
0 1 ND1 +ND3 Ni Mid-low
1 1 ND1 +ND2 +ND3 +ND4 Ni Low

is to retrieve the leaking bits. The second is regarding the SCT detection by the chip
owner; as the SCT is an additional HT, its presence increases leakage power directly
proportional to the SCT size. Dynamic power can be calculated using equation (4),
where Cload is the capacitance load at the output nets, Fsa is the switching activity
factor, VDD is the supply voltage, and E is the total energy of a cell. The switching
activity factor describes how many switches will occur per second. As for the RO,
since the signals are constantly switching, this factor is two times the ROŠs oscillation
frequency, which can be estimated by calculating the total path delay of the ring as in
equation (5).

Pdynamic =
1

2
VDD

2Fsa

∑

inet

Cload(i)+Fsa

∑

cellj

E(j)

Fsa = 2FRO =
1

τchain

(4)

(5)

Moreover, in addition to the carefully designed RO-based SCT structure, the SCT
trigger must be accordingly planned. For example, in the proposed SCT architecture,
the trojan is not allowed to compete with the dynamic power consumption of the crypto
core Ű the SCT triggers right after the crypto core Ąnishes its cryptographic operation.
For this reason, our SCT has a trigger signal that is connected to the ŞdoneŤ signal
coming from the crypto core.

60



As the SCT is designed for a speciĄc target layout, the attacker has to perform a
few analyses before, as illustrated in Figure 28: (1) netlist extraction, (2) frequency
estimation, and (3) power analysis. First, in (1), the attacker has to extract the
gate-level netlist from the victim layout [136] Ű our threat model considers the attacker
only holds the layout. Then, with the gate-level netlist on hand, in (2), the attacker
has to estimate the operating frequency of the target circuit by performing STA [20].
Finally, in (3), the attacker can perform a typical power analysis with the knowledge of
the operating frequency and the gate-level netlist. For relatively large circuits, static
power can be estimated very precisely even without input vectors8.

With the SCT designed accordingly with the target circuit, the next step is its insertion.
Then, the attacker can utilize the pre-mask ECO feature provided by commercial EDA
tools for inserting the SCT. The primary purpose of ECO is to Ąx minor bugs in a
Ąnalized layout instead of re-implementing the whole design. Hence, saving a tremendous
amount of runtime to Ąnalize a given design Ű essential for design companies where
time-to-market is crucial. However, this feature is leveraged in the proposed ECO
framework to insert malicious logic rather than Ąx bugs. I emphasize that no EDA
vendor supports this type of usage of the ECO feature. In addition, the pre-mask ECO
does not require special cells (e.g., space cells) and is a one-time operation. For more
information about ECO and its features, I direct the reader to [20].

Nonetheless, for the SCT insertion via ECO, an attacker can achieve his/her goal
without utilizing spare cells. Since we previously established that the attacker could
discern any gate in a layout, he can replace Ąller and spare cells for his malicious logic.
Contrarily to spare cells, every digital circuit layout has Ąller cells. During placement,
EDA tools have to spread the standard cells to assure routability, thus mandatorily
leaving gaps between cells. For more details about the relationship between placement
density and HT insertion, we direct the reader to [166].

After the ECO, the attacker has to perform timing sign-off to guarantee that the
performance of the victimŠs design was not disturbed. The SCT insertion is not likely
to perturb the targetŠs performance; it is only connected to a register (crypto key
storage) and some control signals, adding a small capacitive load. Besides, the coupling
capacitance inserted by the additional routing wires is minimal due to the SCTŠs
lightweight characteristic and the inherent goal of the ECO Ćow: not to disturb the

existing logic. However, even if unlikely, the addition of the SCT could hinder the target
performance. Since the ECO makes this attack relatively fast, the attacker can try
different SCT architectures until he/she Ąnds a suitable trojan for their target circuit.

5.3 Testchip: Results and Discussion

For the experimental investigation, I have utilized AES-128 and Present (PST) [167]
crypto cores with Nkey = 128 and Nkey = 80, respectively. The AES crypto core was
chosen due to its standardized status and popularity, while PST was chosen due to its
lightweight characteristic [168].

8For crypto cores, in particular, it is a fair assumption to consider the plaintext to be
randomly assigned, the adversary does not need precise vectors to estimate the (order of
magnitude) of the power consumption.

61



In order to demonstrate the potential malicious capabilities of the ECO Ćow (see
Figure 28), I designed a silicon proof of concept comprising four crypto cores altered
with the proposed SCT. The SCTs utilized for the chip are carefully crafted to stress test
the ECO Ćow and its limitations: the chosen circuits are synthesized for their maximum
frequency and challenging densities, making the SCT insertion even more challenging.
The proposed framework includes all steps necessary for assessing the GDSII database,
designing a hardware trojan, and inserting it in a Ąnalized layout.

AES_HDHD
PST_HFHD

PST_LFHD AES_LFHD

Control Unit

Figure 29: ASIC prototype top-level diagram (left), layout (middle), and its bare die (right).
The highlighted pin identifies the lower-right corner in red (adapted from [17]).

Figure 29 illustrates the top level of the chip, containing the four crypto cores and a
control unit for handling the data traffic in and out of the chip. The crypto cores are the
AES High-Frequency-High-Density (AES_HFHD), AES Low-Frequency-High-Density
(AES_LFHD), PST High-Frequency-High-Density (PST_HFHD), PST Low-Frequency-
High-Density (PST_LFHD). The signals UART_TX and UART_RX are utilized for
communicating with the control unit. In addition, the signals DONE_1, DONE_2,
DONE_3, and DONE_4 indicate the end of a cryptographic operation for AES_HFHD,
AES_LFHD, PST_HFHD, and PST_LFHD, respectively. These signals are exposed as
primary outputs only for debug reasons; their presence is not required for the attack.
Internally, these same signals are the triggers for the SCTs. To help the reader better
visualize the operation of the SCT, Figure 30 illustrates a SPICE simulation of the SCT
using the AES_LFHD target as an example. The set of leaked keys in the image is
{00-01-10-11}. The RO operating frequency and power results are from a SPICE-level
simulation with parasitics, and the total power of the AES_LFHD is estimated from
physical synthesis.

Similarly to the G-GPU, each crypto core is power gated using coarse-grain header
power switches inserted in a column fashion (see Figure 18), with the power switch
ŞenableŤ controlled by the signals PSx. Implementing the crypto cores with the possibility
of total shut-down is extremely valuable for evaluating our attack because we only read
the power signature from the enabled core.

A different RO is designed for each crypto core according to its physical characteristics
described in Table 9. In Table 9, the results are separated into before and after SCT
insertion, where the design density, leakage, clock-tree (CT) power, and total power are
reported. To design the ROs for the ASIC prototype is utilized before SCT insertion
results. In the proposed ROs, the maximum power step generated by a RO is 10% of
the leakage plus CT power. Note that this percentage is not a hard constraint nor a

62



0

1

O
ff

High Mid-high Mid-low Low

2
8

5
u

W

313uW 310uW 308uW 306uW
65MHz 45MHz 34MHz 20MHzE

n
a

b
le

0

1
S

0

0

1

S
1

0

0.5

1.0

R
O

 O
u

tp
u

t 
(V

)

 285
 295
 305
 315

 40 130 220 310C
u

rr
e

n
t 

(µ
A

)

Time (ns)

Figure 30: Post-layout simulation of SCT architecture in Cadence Spectre. The target design
is AES_LFHD and the Trojan payload is configured as ROD6I10 (from [20]).

Table 9: Physical synthesis results for our considered targets, before and after trojan insertion.

Before SCT insertion After SCT insertion
Core Frequency

(MHz)
Density
(%)

Leakage
(µW )

CT
(µW )

Total Power
(µW )

Density
(%)

Leakage
(µW )

CT
(µW )

Total Power
(µW )

AES_LFHD 100 75 75.8 116.7 1660 78.20 79 117.6 1720
AES_HFHD 1000 72 1036 1241 22610 73.02 1040 1252 22830
PST_LFHD 95 70 14.09 31.89 371.2 82.05 17.72 32.85 428.5
PST_HFHD 950 69 34.13 329.10 3785 80.26 36.96 341.5 4015

limitation of the proposed architecture; attackers can choose any reasonable threshold
value to design their ROs. However, the 10% margin is arguably a good trade of
capability of leaking the bits and stealthiness. The designed ROs for the ASIC prototype
are described in Table 10, reporting the oscillation frequency and power consumption of
each designed RO, where the RO nameŞDXIYŤ suffix represents X amount of delay cells
and Y amount of inverter cells. These results are from detailed SPICE-level simulations.
Most importantly, Table 10 shows that the induced power step separation is clearly
visible in increments of a few microwatts; thus, the leaking bits can indeed be modulated
in the power consumption of the chip.

After designing the RO and synthesizing the remainder of the SCT logic, the attacker
is ready to perform the insertion via the ECO methodology described in Figure 28.
For the ASIC prototype, the ECO Ćow was completed in a single run, i.e., calling the
ECO command a single time. The results for SCT insertion are described on the right
side of Table 9 (ŚAfter SCT insertionŠ). For all scenarios considered, the ECO Ćow
could successfully place and route the SCT, even for highly dense layouts. A visual
comparison of the density increase for the AES_HFHD and PST_HFHD SCTs is given
in the bottom part of Figure 31. Note that the placement of the targets (top part of
Figure 31) was kept identical, and only Ąller cells were removed for the SCT insertion

63



Table 10: RO operating frequency and power consumption from a SPICE-level simulation for
four variants of AES and PST.

Target Core RO Power & Frequency (µW & MHz)
S=00 S=01 S=10 S=11

AES_LF ROD6I10 19@65 17@45 15@34 13@20
AES_HF ROD10I10 198@551 182@483 161@390 140@300
PST_LF ROD6I4 16@112 11@58 10@39 8@20
PST_HF ROD8I10 42@79 36@61 31@46 26@31

Figure 31: Placement view (top panels) and density map (bottom panels) of the AES_HFHD
and PST_HFHD cores, before and after SCT insertion via ECO (modified from [17]).

via ECO. Therefore, this is a key Ąnding of our work and conĄrms the feasibility of the
attack.

Aside from being able to insert the SCT, the ECO Ćow also has to preserve the
performance of the target circuit. As discussed in Chapter 2.2, the coupling capacitance
from adjacent routing wires affects the propagation delay. Thus, the added routing
wires from the SCT could negatively impact the target circuitŠs overall performance.
The comparison of performance for AES_HFHD and PST_HFHD cores is illustrated
in Figure 32, where we contrast the pre- and post-ECO timing slack. These results
show that the impact is more signiĄcant on the PST_HFHD implementation, which
is explained by the high-density increase reported in Table 9. Therefore, the impact
of the SCT insertion did not degrade the crypto coreŠs performance. Finally, the chip
was manufactured utilizing commercial 65nm technology at a partner foundry in March

 0

 20

 40

 60

 80

 100

 120

 140

-20  0  20

#
 o

f 
p

a
th

s

Time (ps)

Pre-ECO
Post-ECO

 0

 5

 10

 15

 20

-20  0  20  40  60  80  100  120

Min. setup target slack

#
 o

f 
p

a
th

s

Time (ps)

Pre-ECO
Post-ECO

Figure 32: Pre- and post-ECO setup timing slack comparison of AES_HFHD (right) and
PST_HFHD (left) (from [17]).

64



OFF 11 10 01 00

VDDIO

VDD

UART_RX
UART_TX

CLK_CU

DONE2

Figure 33: Setup used for bringing up the testchip. On the left side, we show the signals used
for controlling the chips. On the right side, the current consumption of the chip when the RO
is active (from [20]).

2021. The bench tests of the 25 packaged samples of the chip were conducted in July
2021. All packaged samples were conĄrmed to be 100% functional.

The testchip bench tests were performed utilizing the setup illustrated in Figure 33.
The setup has a custom printed circuit board (PCB), a ZedBoard from Avnet with
a Xilinx Zynq-7000 (see Figure 15), a 4-channel digital oscilloscope, and a 2-channel
power supply with an ammeter with pico ampere precision. To fully validate the chip,
the tests are divided into two phases: the total power and leakage were measured;
second, all SCTs were tested to assess the feasibility of the attack. As a result, the total
power average and leakage results are given in Table 11, and its distribution across
the samples is depicted in Figure 34 for the worst, typical, and best-case scenarios
(SS-0.9V-0oC, TT-1V-25oC, FF-1.1V-125oC, respectively). Corners provided by the
vendor are for extreme cases, i.e., the best-case scenario is characterized at 125o with
an over voltage of 1.1V; in this work, the test bench measurements were performed
at room temperature and at a nominal voltage of 1.0V. In Figure 34, it is clear that
the samples are skewed towards the best-case scenario, demonstrating higher average

Table 11: Power domains, clock, average total power, and leakage across the samples tested.

Block Clock Switch Signal Leakage (µW) Total Power (µW)
Control Unit CLK_CU @1MHz Always on 46.69±4.75 -
AES_HFHD CLK_CORE @1GHz PS1 743.79±108.07 101160±10781
AES_LFHD CLK_CORE @100MHz PS2 131.57±10.35 3139.32±85.38
PST_HFHD CLK_CORE @950MHz PS3 80.75±7.82 9661.3±758.52
PST_LFHD CLK_CORE @95MHz PS4 74.35±6.84 868.56±57.90

65



leakage. The slowest sample is near the typical case, while the fastest sample is far
from the typical best case.

For testing the SCTs, the following procedure was performed: (1) a cryptokey with
the 8 Ąrst bits set to Ş11-10-01-00Ť was programmed in the Control UnitŠs register
bank; (2) a command for single encryption was issued; (3) right after the encryption
is done, the chip asserts one of the ŞDONEŤ outputs to mark the time at which the
RO starts operating; (4) using only the clock signal CLK_CORE, three bursts of clocks
were sent to shift the cryptokey connected to the RO three times; (5) during the whole
procedure, the current consumed by the chip is monitored.

 0
.0

01
 0

.0
02

 0
.0

03

 200  400  600  800  1000  1200

W
C

T
C

B
C

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y

Current (µA)

AES_HFHD

S
lo

w
e

s
t 

S
a

m
p

le

F
a

s
te

s
t 

S
a

m
p

le

 0
.0

1
 0

.0
2

 0
.0

3

 80  100  120  140  160  180

W
C

T
C

B
C

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y

Current (µA)

AES_LFHD

S
lo

w
e

s
t 

S
a

m
p

le

F
a

s
te

s
t 

S
a

m
p

le

 0
.0

1
 0

.0
25

 0
.0

4

 40  50  60  70  80  90  100  110  120

W
C

T
C

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y
Current (µA)

PST_HFHD

B
C

S
lo

w
e

s
t 

S
a

m
p

le

F
a

s
te

s
t 

S
a

m
p

le

 0
.0

1
 0

.0
3

 0
.0

5

 40  50  60  70  80  90  100  110

W
C

T
C

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y

Current (µA)

PST_LFHD

B
C

S
lo

w
e

s
t 

S
a

m
p

le

F
a

s
te

s
t 

S
a

m
p

le
Figure 34: Leakage distribution for each crypto core contrasted with the leakage from the
physical synthesis report for three corner cases and the leakage of outlier samples (from [20]).

Figure 33 illustrates an example of the procedure described above for the AES_LFHD
core. As clearly depicted in the ammeter, there are discrete steps representing the leaked
bits Ş11-10-01-00Ť from left to right, respectively, as expected from the key programmed
for this experiment. Next, each chipŠs core was tested following the described procedure
three times to conĄrm the behavior. Repeating the measurements is a common practice
to reduce undesired external interference Ű three repetitions are deemed enough. Finally,
the measured current values were approximated to normal distributions, as represented
in Figure 35.

Comparing the RO performance from the simulations (see Table 10) with ASIC
measurements illustrated in Figure 35, it is clear that the slowest ROs are performing as
expected. However, the fastest RO targeting the AES_HFHD core can only operate at
a low frequency, generating a power step of about 25% of what was expected. In this
case, the ECO insertion had to spread the RO cells farther away because of the lack of
empty spaces nearby (see Fig. 31). For this core, the planned power steps were in the
order of 200 µA, and the actual power steps after manufacturing were in the order of
60 µA. However, the attack will still enjoy a high chance of success due to the distinct
separation of the power steps, even if 95% conĄdence intervals of the distributions
almost overlap. Moreover, the experimental measurement results obtained show that
the variability in the manufacturing process does not affect the effectiveness of the RO
for the smaller designs (AES_LFHD, PST_LFHD, and PST_HFHD), meaning that the
attack can be carried out with the same probability of success, regardless of the silicon

66



 0

 0.05

 0.1

 0.15

 0.2

 50  55  60  65  70  75

58.30 61.80
64.00

67.00

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y
Current (µA)

AES_HFHD

 0

 0.2

 0.4

 0.6

 0.8

 1

 16  18  20  22  24  26  28

19.05
21.22

22.51

25.23

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y

Current (µA)

AES_LFHD

 0

 0.2

 0.4

 0.6

 0.8

 1

 12  14  16  18  20  22  24  26

15.00
16.75 19.53 24.03

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y

Current (µA)

PST_HFHD

 0

 0.5

 1

 1.5

 2

 12  14  16  18  20  22  24  26

13.90
15.4517.52

19.59

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y

Current (µA)

PST_LFHD
S00
S01
S10
S11

Figure 35: Power consumption “steps” distribution for each crypto core. The shadowed area
represents the 95% confidence interval (from [20]).

quality for a given sample.

Nonetheless, one can determine the effectiveness of the proposed SCT insertion
framework by verifying three characteristics: (1) the success rate of the attack, (2) the
probability of detection (i.e., its stealthiness), and (3) the feasibility of the insertion of
the malicious logic during the fabrication-time attack. As the testchip results showed,
the SCT was successful in (1) because the cryptokey was leaked as intended, i.e., the
attack was fully accomplished. However, since the SCT is an additive HT, it has a
probability of being detected by the chip owner. Detecting a trojan of any kind is
generally a problematic task [75]. Because SCTs do not alter the deviceŠs functionality
under attack, any method that relies on observing corrupted bits or any degree of
incorrect computation is likely to fail to detect the trojan. Therefore, only techniques
that rely on observing the chipŠs internal structures and/or its power traces have a
chance of detecting SCTs. For a complete discussion of all detection methods, I direct
the reader to [20].

To verify (3), the attack threat model must Ąrst be revisited. In the SCT threat
model, the attacker has a limited time window for modifying the victim layout. Thus,
manually placing and routing an SCT is unreasonable in such a limited time. Then,
the SCT insertion must be automated by utilizing an EDA tool. Inserting an SCT
by re-implementing the design has a signiĄcant runtime. For example, the testchip
illustrated in Figure 29 is a tiny chip compared with todayŠs typical commercial circuits.
Still, it requires at least 7 hours and 18 minutes to be implemented (see Figure 36).
However, replicating the entire chip is problematic; doing so without the original timing
and power constraints is very difficult, with a very high chance of affecting the target
performance and thus decreasing the stealthiness of the attack.

Nevertheless, the proposed ECO Ćow demonstrates that the insertion of malicious
logic during a fabrication-time attack can be automated and fast. For example, leveraging
the ECO Ćow, the insertion of the proposed SCT requires only 1 hour and 11 minutes Ű
more than 6 hours faster than re-implementing the whole testchip. On top of that, as
previously alluded, the ECO Ćow can keep the original design untouched, increasing
the attackŠs stealthiness. In addition, the proposed ECO Ćow does not require the

67



SCT Insertion

AES_HFHD

AES_LFHD

PST_HFHD

PST_LFHD

Testchip

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

Design Implementation

Attack

Time (s)

Placement
CTS

Route
Post-Route

Netlist Extraction
Power and Time Analysis

ECO Flow

Figure 36: Physical implementation execution time (s) for each step of the flow, and execution
time (s) for inserting the SCT in each implemented crypto core (from [20]).

original power and timing constraints; an estimation can be used without signiĄcant loss.
Moreover, the short runtime associated with the ECO Ćow makes the fabrication-time
attack feasible in a realistic scenario, where the time window that a rogue engineer has
for modifying the layout is (very) limited. Therefore, our proposed ECO Ćow method
for inserting SCTs and any malicious logic is compelling and a rogue element could
exploit the proposed framework to perform a fabrication-time attack. Furthermore,
the proposed ECO framework can be utilized as a platform to assess the layoutŠs
vulnerabilities against additive HT insertion.

5.4 Blind Insertion of HTs Framework

The proposed HT insertion framework by ECO (see Figure 28) has a limitation: the
attacker has to spot the security-critical nodes by visual inspection. Even though visual
inspection is sufficient to locate security-critical nodes for speciĄc targets, such as
the AES crypto core, this weakness limits the frameworkŠs applicability. To further
demonstrate ECOŠs framework capabilities, an upgraded version is proposed for inserting
HTs blindly [19].

An attacker can recover the purpose of signals inside a design by utilizing high-level
functionality reconstruction tools. For example, such tools can recover a Ąnite-state
machine of a target design, distinguishing control and data path nodes [88]. Therefore,
automating the search of security-critical nodes can be done utilizing the output of
these tools. Hence, the proposed framework illustrated in Figure 37 leverages high-level
functionality reconstruction tools for blindly inserting HTs in Ąnalized layouts Ű this
framework is termed Blind insertion of Hardware Trojans (BioHT).

The BioHT framework assumes an equal threat model as the SCT insertion. It only
differs when inspecting the recovered gate-level netlist. Thus, the BioHT is an additional
feature to the framework illustrated in Figure 28, performed after the gate-level netlist
extraction, comprising Ąve steps: (1) netlist recovery; (2) design analysis; (3) trojan
netlist generation; (4) signal selection for connecting the HT; (5) trojan insertion.

BioHT step (1) is performed similarly to the previous ECO framework resulting in a
gate-level netlist we refer to as unamed since the original hierarchy and name of cells

68



Figure 37: Steps 1)–5) of the BioHT Framework explained in detail. The flow starts at the
top left, while the tampered layout (highlighted in red) is the result (adapted from [19]).

and nets are assumed to be absent in the layout. Then, with the gate-level netlist,
during step (2), BioHT generates several metrics to aid the search of nodes to use as
triggers and payload for the HTs. Those metrics are calculated by applying reverse
engineering techniques. However, since these calculations have a considerable runtime
proportional to the desired level of understanding of the design, it becomes a tradeoff
between runtime and design understanding. Hence, the adversary must carefully choose
the metrics to keep the total runtime of the attack short. BioHT generates four different
metrics: transition probability ; spatial clustering ; information flow tracking of selected

signals; RELIC scoring. Transition probability is a metric to Ąnd signals with a low
probability of transitioning [169,170] that are suitable for being triggers, increasing the
HT stealthiness.

Spatial clustering maps candidate cells to hook the HT while minimizing the wire
length of the signals as much as possible to increase the routability of the HT. Information

flow tracking of selected signals is useful for HTs that intend to leak information. Using
imprecise information Ćow tracking (IIFT) [171], the availability of secret information
that each logic gate from the selected signals carries can be measured in an overestimated
manner. Thus, this metric has to be complemented with other metrics that explain
the functionality of signals. RELIC score and FSM identification is valuable high-level
information to identify whether a register belongs to a control logic or data path used to
design the HT payload to target speciĄc parts of the design functionality. For example,
a payload for modifying the control FSM or leaking valuable processed data. The RELIC
scoring is performed utilizing the NETA toolset [172].

BioHT step (3) uses a conĄguration Ąle to generate the HT netlists, where the
user can choose any trigger/payload combinations, and parameter values illustrated
in Figure 38. The available HTs cover known architectures [65,173,174], as well as a
few novel payloads (i.e., leakage through FSK/DBPSK, fault sweeping). It is worth
mentioning that step (3) is not a limitation of BioHT; a user can skip step (3) and use
their own HT netlist or even include new architectures to the BioHT HT generator.

After gathering all metrics during step (2) and generating the desired HT netlists in

69



Trigger Payload

trigger in
payload in

feedthrough in

feedthrough out

payload out

#ti #pi
#�

#po
#�

#tr

=

trigger in
n

v
n

trigger
1

=/
DQ
n-bit

clk

trigger in
n

EN =v
c-bit

Counter

clk

trigger
1

Counter Trigger (n, v, c)

Combinatorial Trigger (n, v)

HT Interface

𝑆𝑟𝑆𝑟 𝑆2

𝑆1

...𝑆𝑠

𝑖𝑛&𝑚1 = 𝑣1 &𝑚1 𝑖𝑛&𝑚2 = 𝑣2 &𝑚2

𝑖𝑛&𝑚𝑠 = 𝑣𝑠 &𝑚𝑠

always

else

else

...
1

0

1

0

1

0

payload in

n

n

𝑀 ∈ {am, fsk, dbpsk, lfsr}
rate: 1/2𝑐 bit/cc

trigger

Leak Payload (n, M, c)

FSM Trigger (n, s,𝑚1, . . . ,𝑚𝑠 , 𝑣1, . . . , 𝑣𝑠 )

trigger in trigger𝑆 = 𝑆𝑠

rst=1 rst=0
rst=
𝑛%2

...

trigger

clk

n

trigger
...

feedthrough in

n

10

v[0]

10

v[1]

10

v[2]

feedthrough out

n

trigger
...

feedthrough in

n

10 10 10

feedthrough out

n

r1 r2 . . . rn
n

LFSR

Shi�’n’burn Payload (n)

Modify Payload (n, v)

Fault Payload (n)

Figure 38: HT Interface and available trojan triggers and payloads. Trigger and payload
parameters are given in parentheses (from [19]).

step (3), an adversary can proceed to step (4) to search for appropriate security-critical
signals where to connect the HT. The search process starts by associating a signal
selection function (SSF) for each interface port of the HT and iteratively selecting
candidate signals from the target circuit to connect to each HT port Ű all based on
one or multiple metrics calculated during step (2). In addition, step (4) also performs
an independency check on all candidate signals. Avoiding mutually dependent signals
is highly beneĄcial. For example, using a signal as a trigger to activate a dependent
payload signal could generate a combinational loop. Moreover, the Modify or Fault
payloads should connect to independent signals to maximize the effectiveness of the
HT.

Finally, using the HT netlist and the selected signals for each HT, BioHT generates
the Ąles for inserting the HT. In addition, BioHT step (5) introduces the Trojan Change
Order (TCO) format to make the attack faster. The TCO Ąle follows the same syntax
as the ECO Ąle, adding commented lines containing directives for the BioHT tool.
Those directives are used to conĄgure the type of HT (e.g., leak, deplete, modify or
fault), the number of connections, and the location of the HT gate-level netlist. Instead
of providing a modiĄed netlist to perform the ECO, EDA tools also support ECO Ąles.
These Ąles describe the modiĄcations to be done by the ECO, with the advantage of
performing it interactively. Hence, it is necessary to load the design once for analyzing
multiple ECO Ąles. Thus, it is possible to pre-generate TCO Ąles for several types of
HT and specialize them according to the targetŠs evaluation. This feature enables the
creation of a database of HTs rapidly available for an attack. Finally, the attacker can
commit the changes if the TCO trial is successful.

Three crypto cores are utilized for targets, AES, SHA-256, RSA, and the general-
purpose PULPino microcontroller to evaluate the BioHT framework. In total, it is
explored 96 combinations of triggers, payloads, and targets. The DSE exercise results
showed that BioHT could automatically Ąnd suitable secure critical nodes for inserting
sophisticated HTs into a victim layout. Moreover, the experiments demonstrated that
the HT insertion vulnerability of a layout is not correlated to the designŠs density, i.e.,
empty space to insert the additional malicious logic. In the two low-density designs,
SHA-256 and PULPino, the HT insertion partially failed. In contrast, in the high-density
designs, HT insertion succeeded, even for large HTs with hundreds of cells, independent

70



of the increase in wire length. Thus, the BioHT goes beyond a proof of concept that
blindly attacking a layout is possible. The framework can quickly produce a boundary of
HT insertion feasibility, provide a risk assessment and guide physical defense strategies
for HT insertion. To access all results and a more in-depth discussion of the BioHT
framework, I direct the reader to [19]. All the 96 explored combinations results are
available in [175].

71



6 Conclusions and Future Work

Integrated circuits have become a signiĄcant part of our daily life, and their integration
is constant at a fast pace. Moreover, critical infrastructures are increasingly deploying
IC-based systems. Thus, a compromised chip belonging to one of these systems can
lead to the leakage of sensitive data and even more dire consequences. For these and
many other reasons, the hardware security Ąeld has recently increased in popularity. The
main goal of this community is to guarantee the trustworthiness of integrated circuits
throughout their life span. Many threats and defenses have been recently studied;
however, the overall ICŠs security level is still being determined, while Ąnding many
other new threats is still possible. All the presented results in this PhD thesis aim
to accelerate the hardware security Ąeld research to establish the ICŠs security, i.e.,
precisely deĄning the ICŠs vulnerabilities and potential countermeasures. Thus, the main
contributions of this PhD thesis are a new ASIC-like GPU accelerator with security
features, a survey on a defense technique called Split Manufacturing, and an extensive
study of hardware trojans in a fabrication-time attack paradigm.

Capable modern SoCs are also essential to the fast development of IC-based systems.
In Chapter 3, I proposed an open-source GPU architecture to aid the research of domain-
speciĄc ASIC accelerators based on GPU-like accelerators Ű termed G-GPU. A fully
automated framework called GPUPlanner is also made publicly available for generating
G-GPU IPs from the RTL to a tape-out-ready layout. The G-GPU experimental results
demonstrated the feasibility of its architecture as domain-speciĄc ASIC accelerators.
Furthermore, the performance comparison between the G-GPU and the RISC-V shows
that the G-GPU proposed architecture has excellent beneĄts for applications with
high parallelism. In addition, the GPUPlanner can power gate G-GPUŠs compute
units. This feature enables the creation of low-power, design for reliability, and security
solutions. Finally, because the GPUPlanner is an open-source framework, the community
can explore the design space of GPU-like accelerators Ű as the literature lacks GPU
architectures targetting ASIC. Moreover, the optional dynamic power control can enable
and expand the research of GPU-speciĄc countermeasures against power and EM side-
channel attacks. Therefore, the proposed G-GPU architecture and the GPUPlanner
framework go beyond analyzing a reasonable GPU-like accelerator in 65nm. The
proposed framework can be extended for future work to support other baseline GPU
architectures, new solutions to enhance the designŠs security/reliability, and other
technologies.

The current semiconductor supply chain is decentralized, complex, and highly
globalized. Design companies must rely on pure-play foundries to manufacture their
designs, which is arguably a security threat for ICs. Exposing their layouts to third-party
entities can reveal trademark IP secrets, and in the worst scenario, a rogue element
inside such foundries could manipulate the layout for malicious reasons. In Chapter 4,
I surveyed the Split Manufacturing technique, a countermeasure to secure ICs during
manufacturing. The surveyed works showed a signiĄcant disparity in how the technique
is approached. First, there is no consensus on benchmark suites and metrics to use
when evaluating the technique, difficulting the comparison between the studies and,
in some cases, making it impossible. Despite this difficulty, it was possible to classify

72



the studies, demonstrating the many interpretations of the technique, its attacks, and
defenses. Nonetheless, the results are presented to illustrate the present state of the
technique. Therefore, this work can be beneĄcial for future researchers to contextualize
their techniques for augmenting Split Manufacturing.

Predominantly, Spilt ManufacturingŠs security level is still under debate. Some
studies consider the straightforward Split Manufacturing security level enough to protect
the layout against fabrication-time attacks, while others argue it is insufficient to secure
the layout. However, as previously alluded, the lack of uniĄed benchmark circuits
and set of metrics could have diverged the conclusions for many different scenarios.
Hence, creating a uniĄed benchmark suite speciĄcally crafted for Split Manufacturing
evaluation and a set of metrics to quantify/qualify its performance could facilitate the
discussion about Split ManufacturingŠs security level. In addition, increasing the number
of demonstrations in silicon could also help with evaluation and adoption issues related
to Split Manufacturing.

One of the many potential threats to an IC during manufacturing is the insertion of
a hardware trojan. The literature has many hardware trojan demonstrations, a few even
in silicon; however, not a single one disclosed how their hardware trojan is inserted. In
Chapter 5, I proposed a complete framework based on the ECO feature for inserting
HTs in a Ąnalized layout, together with a novel SCT architecture to demonstrate the
framework. The SCT insertion was detailed step by step, showing that a rogue element
inside a foundry can replicate it effortlessly. Furthermore, the SCT attack was validated
by the developed ASIC prototype. The ASIC bench test results demonstrated the
attackŠs success for all samples available, where the cryptokey was extracted via power
signature. The measurements have also demonstrated the robustness of the SCT against
skews from the manufacturing process. On top of that, the testchip had all 4 SCTs
inserted in less than two hours, making the attack viable in an actual fabrication-time
attack as it has a limited time window.

One limitation of the proposed HT insertion framework by ECO is that the attacker
has to spot the security-critical nodes by visual inspection. Thus, in Chapter 5,
an upgraded version of the framework for blindly inserting HTs was discussed to
further demonstrate ECOŠs framework capabilities Ű termed BioHT. Hence, the BioHT
framework leverages reverse engineering techniques to introduce sophisticated trojan
into circuits, with little knowledge about the target designs. Furthermore, the BioHT
experiments demonstrated that the complete approach is fast, allowing the user to
execute it multiple times in the time frame between the tape-out and manufacturing.
Thus, enabling the selection of the optimum trojan out of several possibilities. Moreover,
BioHT also demonstrates how a realistic trojan insertion would be performed and can
guide risk assessment, defense, and future research on the topic. Finally, the BioHT
framework provides all information and capabilities to advance countermeasures against
HT insertion threats.

73



List of Figures

1 Detailed ICŠs life cycle phases, possible attacks, and defenses. . . . . . . . . . . . . 11

2 Growth of design rules from CMOS 180nm until ĄnFET 5nm (from [43]). 14

3 Logic manufacturing process steps comparison between CMOS 28nm,
FinFET 10nm, and, FinFET 5nm, technology nodes (from [45]). . . . . . . . . 15

4 Semiconductor industry evolution (from [47]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Cross section of an Integrated Circuit (from [22]). . . . . . . . . . . . . . . . . . . . . . . . 17

6 Typical design Ćow for digital integrated circuits. . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Abstraction levels of a digital system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Setup and hold time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Timing path calculation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Block design implementation steps; Ćoorplanning, placement, clock-tree
synthesis, and, routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Systematization of hardware security around the attack method (adapted
from [16]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

12 Additive hardware trojan taxonomy based on trigger and payload imple-
mentation types (adapted from [61]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

13 Taxonomy of counterfeit electronics (adapted from [59]).. . . . . . . . . . . . . . . . . 26

14 Example of a circuit locked using two XOR key gates, K1 and K2.. . . . . . . 27

15 Example of FPGA-based SoC Ű Zynq-7000s (from [107]). . . . . . . . . . . . . . . . . 29

16 FGPU architecture with memories colored according to the layouts
displayed in Figs. 3 and 4 (from [9]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

17 SimpliĄed example of smart memory technique by halving the size of
the word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

18 Example of a header power switch schematic (left panel) and placement
(right panel).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

19 GPUPlanner generic dynamic power controller block diagram. . . . . . . . . . . . 36

20 GPUPlannerŠs G-GPU generation Ćow (adapted from [9]). . . . . . . . . . . . . . . . 37

21 Layout comparison between the minimum and maximum performance
of G-GPUs with 1 CU (top) and 8 CUs (bottom). . . . . . . . . . . . . . . . . . . . . . . . . 39

22 Layout comparison between G-GPU (2) 1CU@500MHz and (4) 1CU@677MHz
with power gating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

23 Compute unit partition dynamic power versus switching activity for (2)
1CU@500MHz (left panel) and (4) 1CU@677MHz (right panel). . . . . . . . . . 41

24 Speed-up over RISC-V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

25 Compatibility rules between FEOL and BEOL (adapted from [131]). . . . . . 44

26 Example of a partitioned circuit (from [22]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

27 A typical IC design Ćow. Highlighted in red is the stage where a rogue
element may mount an attack (modiĄed from [17]). . . . . . . . . . . . . . . . . . . . . . . 58

28 The proposed trojan insertion methodology for an SCT capable of leaking
2 bits per power signature reading (modiĄed from [17]). . . . . . . . . . . . . . . . . . 60

29 ASIC prototype top-level diagram (left), layout (middle), and its bare
die (right). The highlighted pin identiĄes the lower-right corner in red
(adapted from [17]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

74



30 Post-layout simulation of SCT architecture in Cadence Spectre. The
target design is AES_LFHD and the Trojan payload is conĄgured as
ROD6I10 (from [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

31 Placement view (top panels) and density map (bottom panels) of the
AES_HFHD and PST_HFHD cores, before and after SCT insertion via
ECO (modiĄed from [17]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

32 Pre- and post-ECO setup timing slack comparison of AES_HFHD (right)
and PST_HFHD (left) (from [17]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

33 Setup used for bringing up the testchip. On the left side, we show the
signals used for controlling the chips. On the right side, the current
consumption of the chip when the RO is active (from [20]).. . . . . . . . . . . . . . 65

34 Leakage distribution for each crypto core contrasted with the leakage
from the physical synthesis report for three corner cases and the leakage
of outlier samples (from [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

35 Power consumption ŞstepsŤ distribution for each crypto core. The
shadowed area represents the 95% conĄdence interval (from [20]). . . . . . . 67

36 Physical implementation execution time (s) for each step of the Ćow,
and execution time (s) for inserting the SCT in each implemented crypto
core (from [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

37 Steps 1)Ű5) of the BioHT Framework explained in detail. The Ćow starts
at the top left, while the tampered layout (highlighted in red) is the
result (adapted from [19]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

38 HT Interface and available trojan triggers and payloads. Trigger and
payload parameters are given in parentheses (from [19]). . . . . . . . . . . . . . . . . . 70

75



List of Tables

1 Characteristics of 12 different GGPU solutions generated by our tool
after logic synthesis in Cadence Genus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Comparison of power consumption for 1CU@500MHz and 1CU@677
versions with and without power gating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Threat Models, Attacks, and Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Benchmark Size and Comparison of Attack Results. . . . . . . . . . . . . . . . . . . . . . . 49
5 Split Manufacturing Defenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Results for Defense Techniques based on Proximity Perturbation. . . . . . . . . 52
7 Results for Defense Techniques based on Wire Lifting.. . . . . . . . . . . . . . . . . . . . 54
8 Ring oscillator active path conĄguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9 Physical synthesis results for our considered targets, before and after

trojan insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10 RO operating frequency and power consumption from a SPICE-level

simulation for four variants of AES and PST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
11 Power domains, clock, average total power, and leakage across the

samples tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

76



References
[1] I. Bojanova, ŞThe digital revolution: WhatŠs on the horizon?,Ť IT Professional,

vol. 16, no. 1, pp. 8Ű12, 2014.

[2] Make Use Of, Ş8 reasons why semiconductors are important to modern living.Ť
ttps://www.makeuseof.com/why-semiconductors-important. Accessed: June 15,
2022.

[3] International Monetary Fund, ŞDigitization of Money and Finance: Challenges and
Opportunities.Ť https://www.imf.org/en/News/Articles/2018/05/08/sp050818-
digitization-of-money-and-Ąnance-challenges-and-opportunitie. Accessed: June
15, 2022.

[4] European Central Bank, ŞA digital euro.Ť
https://www.ecb.europa.eu/paym/digital_euro/html/index.en.html. Ac-
cessed: June 15, 2022.

[5] C. Mucci, L. Vanzolini, A. Lodi, A. Deledda, R. Guerrieri, F. Campi, and M. Toma,
ŞImplementation of aes/rijndael on a dynamically reconĄgurable architecture,Ť in
2007 Design, Automation Test in Europe Conference Exhibition, pp. 1Ű6, 2007.

[6] J. Nickolls and W. J. Dally, ŞThe gpu computing era,Ť IEEE Micro, vol. 30, no. 2,
pp. 56Ű69, 2010.

[7] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
ŞGpu computing,Ť Proceedings of the IEEE, vol. 96, no. 5, pp. 879Ű899, 2008.

[8] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov, ŞParallel computing experiences with cuda,Ť
IEEE Micro, vol. 28, no. 4, pp. 13Ű27, 2008.

[9] T. D. Perez, M. M. Gonçalves, L. Gobatto, M. Brandalero, J. R. Azambuja, and
S. Pagliarini, ŞG-gpu: A fully-automated generator of gpu-like asic accelerators,Ť
in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 544Ű547, 2022.

[10] The Wall Street Journal, ŞThere ArenŠt Enough Chips - Why Are They So Hard
to Make?.Ť https://www.wsj.com/story/there-arent-enough-chips-why-are-they-
so-hard-to-make-3e29c7e0. Accessed: June 15, 2022.

[11] Intel, ŞIntel Announces Initial Investment of Over €33 Billion for RD and Manufac-
turing in EU.Ť https://www.intel.com/content/www/us/en/newsroom/news/eu-
news-2022-release.html. Accessed: Aug 21, 2022.

[12] Bloomberg, ŞThe Big Hack: How China Used a Tiny Chip to InĄltrate U.S.
Companies.Ť https://www.bloomberg.com/news/features/2018-10-04/the-big-
hack-how-china-used-a-tiny-chip-to-inĄltrate-america-s-top-companies. Accessed:
June 15, 2022.

77



[13] Cybermagazine, ŞThe history of cybersecurity.Ť https://cybermagazine.com/cyber-
security/history-cybersecurity. Accessed: June 15, 2022.

[14] Help Net Security, ŞThreats to hardware security are growing.Ť
https://www.helpnetsecurity.com/2022/05/10/hardware-security-threats-
video. Accessed: June 15, 2022.

[15] Semiengineering, ŞHardware Security: A Critical Piece Of The Cybersecurity
Puzzle.Ť https://semiengineering.com/hardware-security-a-critical-piece-of-the-
cybersecurity-puzzle/. Accessed: June 15, 2022.

[16] M. Rostami, F. Koushanfar, and R. Karri, ŞA primer on hardware security: Models,
methods, and metrics,Ť Proceedings of the IEEE, vol. 102, no. 8, pp. 1283Ű1295,
2014.

[17] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, ŞSide-channel trojan insertion - a
practical foundry-side attack via eco,Ť in 2021 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 1Ű5, 2021.

[18] T. Perez and S. Pagliarini, ŞA side-channel hardware trojan in 65nm cmos with
2µW precision and multi-bit leakage capability,Ť in 2022 27th Asia and South

Pacific Design Automation Conference (ASP-DAC), pp. 9Ű10, 2022.

[19] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, ŞA pragmatic methodology for blind
hardware trojan insertion in Ąnalized layouts,Ť in 2022 International Conference

on Computer-Aided Design (ICCAD), 2022.

[20] T. D. Perez and S. Pagliarini, ŞHardware trojan insertion in Ąnalized layouts: From
methodology to a silicon demonstration,Ť IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 2022.

[21] J. Rajendran, O. Sinanoglu, and R. Karri, ŞIs split manufacturing secure?,Ť in
2013 DATE, pp. 1259Ű1264, 2013.

[22] T. D. Perez and S. Pagliarini, ŞA survey on split manufacturing: Attacks, defenses,
and challenges,Ť IEEE Access, vol. 8, pp. 184013Ű184035, 2020.

[23] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, ŞOn improving the security
of logic locking,Ť IEEE TCAD, vol. 35, no. 9, pp. 1411Ű1424, 2016.

[24] K. Zamiri Azar, H. Mardani Kamali, H. Homayoun, and A. Sasan, ŞThreats on
logic locking: A decade later,Ť in GLSVLSI ’19, p. 471Ű476, 2019.

[25] J. Sweeney, V. Mohammed Zackriya, S. Pagliarini, and L. Pileggi, ŞLatch-based
logic locking,Ť in 2020 IEEE HOST, pp. 132Ű141, 2020.

[26] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and
O. Sinanoglu, ŞProvably-secure logic locking: From theory to practice,Ť in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS Š17, (New York, NY, USA), p. 1601Ű1618, Association for
Computing Machinery, 2017.

78



[27] T. Hoque, R. S. Chakraborty, and S. Bhunia, ŞHardware obfuscation and logic
locking: A tutorial introduction,Ť IEEE Design & Test, vol. 37, no. 3, pp. 59Ű77,
2020.

[28] Z. U. Abideen, T. D. Perez, and S. Pagliarini, ŞFrom fpgas to obfuscated easics:
Design and security trade-offs,Ť in 2021 Asian Hardware Oriented Security and

Trust Symposium (AsianHOST), pp. 1Ű4, 2021.

[29] A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu, A. Sri-
vastava, Y. Xie, M. Yasin, and M. Zuzak, ŞKeynote: A disquisition on logic
locking,Ť IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 39, no. 10, pp. 1952Ű1972, 2020.

[30] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, ŞRemoval attacks
on logic locking and camouĆaging techniques,Ť IEEE Transactions on Emerging

Topics in Computing, vol. 8, no. 2, pp. 517Ű532, 2020.

[31] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, ŞCircuit camouĆage
integration for hardware ip protection,Ť in DAC, pp. 1Ű5, 2014.

[32] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, ŞProvably
secure camouĆaging strategy for ic protection,Ť IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 38, no. 8, pp. 1399Ű1412,
2019.

[33] P. Subramanyan, S. Ray, and S. Malik, ŞEvaluating the security of logic encryption
algorithms,Ť in 2015 IEEE HOST, pp. 137Ű143, 2015.

[34] CHES, ŞConference on Cryptographic Hardware and Embedded Systems.Ť
https://ches.iacr.org/. Accessed: Aug 21, 2022.

[35] HOST, ŞIEEE International Symposium on Hardware Oriented Security and Trust
(HOST).Ť http://www.hostsymposium.org/. Accessed: Aug 21, 2022.

[36] AsianHOST, ŞAsian Hardware Oriented Security and Trust Symposium (Asian-
HOST).Ť http://asianhost.org/. Accessed: Dec 11, 2022.

[37] COSADE, ŞInternational Workshop on Constructive Side-Channel Analysis and
Secure Design.Ť https://www.cosade.org/. Accessed: Aug 21, 2022.

[38] R. Fair, ŞHistory of some early developments in ion-implantation technology
leading to silicon transistor manufacturing,Ť Proceedings of the IEEE, vol. 86,
no. 1, pp. 111Ű137, 1998.

[39] The Pragmatic Programmers, ŞThe Caculator Wars.Ť
https://medium.com/pragmatic-programmers/the-calculator-wars-
66bdf4cbab3d. Accessed: June 19, 2022.

[40] Fabricated Knowledge, ŞLessons from History: The 1980s Semiconduc-
tor Cycle(s).Ť https://www.fabricatedknowledge.com/p/history-lesson-the-1980s-
semiconductor. Accessed: June 19, 2022.

79



[41] Fabricated Knowledge, ŞLessons from History: The 1990s Semiconductor Cy-
cle(s).Ť https://www.fabricatedknowledge.com/p/lessons-from-history-the-1990s-
semiconductor. Accessed: June 19, 2022.

[42] Anysilicon, ŞWhat is a Fabless Company.Ť https://anysilicon.com/what-is-a-
fabless-company/. Accessed: June 19, 2022.

[43] Semiconductor Engineering, ŞDesign Rule Complexity Rising.Ť
https://semiengineering.com/design-rule-complexity-rising/. Accessed:
June 19, 2022.

[44] Semiconductor Digest, ŞShortage to Surplus Cycle Hits Semi But One Segment
Escapes.Ť https://www.semiconductor-digest.com/shortage-to-surplus-cycle-hits-
semi-but-one-segment-escapes/. Accessed: June 19, 2022.

[45] Fabricated Knowledge, ŞThe Rising Tide of Semiconductor Cost.Ť
https://www.fabricatedknowledge.com/p/the-rising-tide-of-semiconductor.
Accessed: June 19, 2022.

[46] EETimes, ŞIntel Will Rely on TSMC for its Rebound.Ť
https://www.eetimes.com/intel-will-rely-on-tsmc-for-its-rebound/. Accessed:
Sept. 9, 2022.

[47] i-Micronews, ŞHigh-End Performance Packaging 2022 Ű Focus on 2.5D/3D Integra-
tion.Ť https://www.i-micronews.com/products/high-end-performance-packaging-
2022-focus-on-2-5d-3d-integration/. Accessed: Aug 17, 2022.

[48] World Health Organization, ŞCoronavirus disease (COVID-19) pandemic.Ť
ttps://www.who.int/europe/emergencies/situations/covid-19. Accessed: Sept.
14, 2022.

[49] Bloomberg, ŞThe Chip Shortage IsnŠt Over Quite Yet.Ť
ttps://www.bloomberg.com/news/newsletters/2022-08-19/the-chip-shortage-
isn-t-over-quite-yet. Accessed: Sept. 14, 2022.

[50] IEEE Spectrum, ŞHow and When the Chip Shortage Will End, in 4 Charts.Ť
https://spectrum.ieee.org/chip-shortage. Accessed: Sept. 14, 2022.

[51] European Chips, ŞSurvey report.Ť https://digital-
strategy.ec.europa.eu/en/library/european-chips-survey. Accessed: Sept.
9, 2022.

[52] Manufacturing Tomorrow, Ş6 Implications of the Chip Shortage for Auto
Manufacturing.Ť https://www.manufacturingtomorrow.com/story/2022/05/6-
implications-of-the-chip-shortage-for-auto-manufacturing/18744/. Accessed:
Sept. 19, 2022.

[53] Synopsys, ŞWhat is Library Characterization?.Ť
https://www.synopsys.com/glossary/what-is-library-characterization.html.
Accessed: June 21, 2022.

80



[54] Cadence, ŞInnovus Implementation System.Ť
https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/tools/digital-design-signoff/innovus-
implementation-system-ds.pdf. Accessed: Sept. 15, 2022.

[55] J. Kim and T. Kim, ŞUseful clock skew scheduling using adjustable delay buffers
in multi-power mode designs,Ť in The 20th Asia and South Pacific Design

Automation Conference, pp. 466Ű471, 2015.

[56] K. Chae, S. Mukhopadhyay, C.-H. Lee, and J. Laskar, ŞA dynamic timing con-
trol technique utilizing time borrowing and clock stretching,Ť in IEEE Custom

Integrated Circuits Conference 2010, pp. 1Ű4, 2010.

[57] R. Signh, Signal integrity effects in custom IC and ASIC designs. IEEE Press,
2002.

[58] European Union Intellectual Property Office (EUIPO), Ş2019
Status Report On IPR Infringement,Ť [Online]. Available:
https://euipo.europa.eu/ohimportal/en/web/observatory/status-reports-
on-ip-infringement.

[59] U. Guin, K. Huang, D. Dimase, J. M. Carulli, M. Tehranipoor, and Y. Makris,
ŞCounterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor
Supply Chain,Ť Proceedings of the IEEE, vol. 102, no. 8, pp. 1207Ű1228, 2014.

[60] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, ŞA2: Analog malicious
hardware,Ť in 2016 IEEE Symposium on Security and Privacy (SP), pp. 18Ű37,
2016.

[61] T. Trippel, K. G. Shin, K. B. Bush, and M. Hicks, ŞIcas: an extensible framework
for estimating the susceptibility of ic layouts to additive trojans,Ť in 2020 IEEE

Symposium on Security and Privacy (SP), pp. 1742Ű1759, 2020.

[62] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, ŞParametric trojans for
fault-injection attacks on cryptographic hardware,Ť in 2014 Workshop on Fault

Diagnosis and Tolerance in Cryptography, pp. 18Ű28, 2014.

[63] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, ŞStealthy dopant-level
hardware trojans,Ť in Cryptographic Hardware and Embedded Systems - CHES

2013 (G. Bertoni and J.-S. Coron, eds.), (Berlin, Heidelberg), pp. 197Ű214,
Springer Berlin Heidelberg, 2013.

[64] L. Lin, W. Burleson, and C. Paar, ŞMoles: Malicious off-chip leakage enabled by
side-channels,Ť in 2009 IEEE/ACM International Conference on Computer-Aided

Design, pp. 117Ű122, 2009.

[65] L. Lin et al., ŞTrojan side-channels: Lightweight hardware trojans through side-
channel engineering,Ť in Cryptographic Hardware and Embedded Systems - CHES

2009, pp. 382Ű395, 2009.

81



[66] Y. Jin and Y. Makris, ŞHardware trojans in wireless cryptographic ics,Ť IEEE

Design Test of Computers, vol. 27, no. 1, pp. 26Ű35, 2010.

[67] Y. Liu, Y. Jin, and Y. Makris, ŞHardware trojans in wireless cryptographic
ics: Silicon demonstration & detection method evaluation,Ť in Int. Conf. on

Computer-Aided Design (ICCAD), pp. 399Ű404, 2013.

[68] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, ŞParametric trojans for
fault-injection attacks on cryptographic hardware,Ť in 2014 Workshop on Fault

Diagnosis and Tolerance in Cryptography, pp. 18Ű28, 2014.

[69] J.-F. Gallais et al., ŞHardware trojans for inducing or amplifying side-channel
leakage of cryptographic software,Ť in Trusted Systems, pp. 253Ű270, 2011.

[70] L. Ali and Farshad, ŞAnalog hardware trojan design and detection in OFDM based
wireless cryptographic ICs,Ť Plos One, vol. 16, no. 7, p. e0254903, 2021.

[71] S. Ghandali, T. Moos, A. Moradi, and C. Paar, ŞSide-Channel Hardware Trojan
for Provably-Secure SCA-Protected Implementations,Ť IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 28, no. 6, pp. 1435Ű1448, 2020.

[72] F. Almeida, M. Imran, J. Raik, and S. Pagliarini, ŞRansomware attack as hardware
trojan: A feasibility and demonstration study,Ť IEEE Access, vol. 10, pp. 44827Ű
44839, 2022.

[73] M. Tehranipoor and F. Koushanfar, ŞA survey of hardware trojan taxonomy and
detection,Ť IEEE Design and Test of Computers, vol. 27, no. 1, pp. 10Ű25, 2010.

[74] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, ŞTrustworthy hardware:
Identifying and classifying hardware trojans,Ť Computer, vol. 43, pp. 39Ű46, Oct
2010.

[75] S. Bhasin and F. Regazzoni, ŞA survey on hardware trojan detection techniques,Ť
in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2021Ű
2024, 2015.

[76] M. Li, B. Yu, Y. Lin, X. Xu, W. Li, and D. Z. Pan, ŞA practical split manufacturing
framework for trojan prevention via simultaneous wire lifting and cell insertion,Ť
in 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 265Ű270, 2018.

[77] H. Salmani, M. Tehranipoor, and J. Plusquellic, ŞA novel technique for improving
hardware trojan detection and reducing trojan activation time,Ť IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 1, pp. 112Ű125,
2012.

[78] Y. Jin and Y. Makris, ŞHardware trojan detection using path delay Ąngerprint,Ť
in 2008 IEEE International Workshop on Hardware-Oriented Security and Trust,
pp. 51Ű57, 2008.

82



[79] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, ŞSilicon demonstration of hardware
trojan design and detection in wireless cryptographic ics,Ť IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1506Ű1519,
2017.

[80] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic, ŞPower supply signal
calibration techniques for improving detection resolution to hardware trojans,Ť in
2008 IEEE/ACM International Conference on Computer-Aided Design, pp. 632Ű
639, 2008.

[81] J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, ŞAn automated conĄgurable trojan
insertion framework for dynamic trust benchmarks,Ť in 2018 Design, Automation

Test in Europe Conference Exhibition (DATE), pp. 1598Ű1603, 3 2018.

[82] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, ŞHardware
trojans: Lessons learned after one decade of research,Ť ACM Trans. Des. Autom.

Electron. Syst., vol. 22, pp. 6:1Ű6:23, May 2016.

[83] K. Hasegawa, K. Yamashita, S. Hidano, K. Fukushima, K. Hashimoto, and
N. Togawa, ŞNode-wise hardware trojan detection based on graph learning,Ť

[84] B. Lippmann, A.-C. Bette, M. Ludwig, J. Mutter, J. Baehr, A. Hepp, H. Gieser,
N. Kovač, T. Zweifel, M. Rasche, and O. Kellermann, ŞPhysical and functional
reverse engineering challenges for advanced semiconductor solutions,Ť in 2022

Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 796Ű
801, 2022.

[85] A. Hepp, J. Baehr, and G. Sigl, ŞGolden model-free hardware trojan detection
by classiĄcation of netlist module graphs,Ť in 2022 Design, Automation Test in

Europe Conference Exhibition (DATE), pp. 1317Ű1322.

[86] R. Torrance and D. James, ŞThe state-of-the-art in semiconductor reverse engi-
neering,Ť Design Automation Conference, pp. 333Ű338, 2011.

[87] L. Aksoy, A. Hepp, J. Baehr, and S. Pagliarini, ŞHardware obfuscation of digital
Ąr Ąlters,Ť in 2022 25th International Symposium on Design and Diagnostics of

Electronic Circuits and Systems (DDECS), pp. 68Ű73, 2022.

[88] T. Meade, S. Zhang, and Y. Jin, ŞNetlist reverse engineering for high-level func-
tionality reconstruction,Ť in 2016 21st Asia and South Pacific Design Automation

Conference (ASP-DAC), pp. 655Ű660, 2016.

[89] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and S. Malik,
ŞReverse Engineering Digital Circuits Using Functional Analysis,Ť pp. 1277Ű1280,
March 2013.

[90] P. Rohatgi, Improved Techniques for Side-Channel Analysis, pp. 381Ű406. Boston,
MA: Springer US, 2009.

83



[91] P. Kocher, J. Jaffe, and B. Jun, ŞDifferential power analysis,Ť in Advances in

Cryptology — CRYPTO’ 99 (M. Wiener, ed.), pp. 388Ű397, 1999.

[92] Intel, ŞIntel Announces Initial Investment of Over
€33 Billion for R&D and Manufacturing in EU.Ť
https://www.intel.com/content/www/us/en/newsroom/news/eu-news-
2022-release.html. Accessed: June 24, 2022.

[93] TechCrunch, ŞTSMC to build a $12 billion advanced semiconductor plant in Ari-
zona with US government support.Ť https://techcrunch.com/2020/05/14/tsmc-
to-build-a-12-billion-advanced-semiconductor-plant-in-arizona-with-u-s-
government-support/. Accessed: June 24, 2022.

[94] IEEE, ŞIeee standard for design and veriĄcation of low-power, energy-aware
electronic systems,Ť IEEE Std 1801-2018, pp. 1Ű548, 2019.

[95] V. Natarajan, A. K. Nagarajan, N. Pandian, and V. G. Savithri, ŞLow power
design methodology,Ť in Very-Large-Scale Integration (K. H. Yeap and H. Nisar,
eds.), ch. 3, Rijeka: IntechOpen, 2018.

[96] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ŞEfficient processing of deep
neural networks: A tutorial and survey,Ť Proceedings of the IEEE, vol. 105, no. 12,
pp. 2295Ű2329, 2017.

[97] T. Fritzmann, G. Sigl, and J. Sepúlveda, ŞRisq-v: Tightly coupled risc-v accel-
erators for post-quantum cryptography,Ť IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2020, p. 239Ű280, Aug. 2020.

[98] AMD, ŞAPU 101: All about AMD Fusion Accelerated Processing Units.Ť
http://developer.amd.com/wordpress/media/2012/10/apu101.pdf. Accessed:
Aug 15, 2022.

[99] ARM, ŞINSTRUCTION SET ARCHITECTURE (ISA).Ť
https://www.arm.com/glossary/isa. Accessed: Aug 15, 2022.

[100] RISC-V Foundation, ŞRISC-V Cores and SoC Overview.Ť https://riscv.org. Ac-
cessed: Aug 15, 2022.

[101] OpenPower Foundation, ŞOpenPower.Ť https://openpowerfoundation.org. Ac-
cessed: Aug 15, 2022.

[102] Oracle and Sun Microsystems, ŞOpenSPARC Overview, 2019.Ť
https://www.oracle.com/servers/technologies/opensparc-overview.html.
Accessed: Aug 15, 2022.

[103] Linux Foundation, ŞCHIPS: Common Hardware for Interfaces, Processors and
Systems.Ť https://chipsalliance.org. Accessed: Aug 15, 2022.

[104] Makeuseof, ŞWhat Is a TPU (Tensor Processing Unit) and What Is It Used For?.Ť
https://www.makeuseof.com/what-is-tpu-how-is-it-used/. Accessed: June 15,
2022.

84



[105] Circuit Cellar, ŞThe Future of Embedded FPGAs Ů eFPGA: The Proof is in
the Tape Out.Ť https://circuitcellar.com/insights/tech-the-future/the-future-of-
embedded-fpgas-efpga-the-proof-is-in-the-tape-out/. Accessed: Aug 17, 2022.

[106] S. K. Lee, P. N. Whatmough, M. Donato, G. G. Ko, D. Brooks, and G.-Y. Wei,
ŞSmiv: A 16-nm 25-mm2 soc for iot with arm cortex-a53, efpga, and coherent
accelerators,Ť IEEE Journal of Solid-State Circuits, vol. 57, no. 2, pp. 639Ű650,
2022.

[107] Xilinx, ŞSoCs with Hardware and Software Programmability.Ť
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html. Accessed:
Aug 17, 2022.

[108] ONLOGIC, ŞYour Ultimate Guide to Understanding PCIe Gen 4.0.Ť
https://www.onlogic.com/company/io-hub/your-ultimate-guide-to-
understanding-pcie-gen-4/. Accessed: Aug 17, 2022.

[109] P. P. Brahma, D. Wu, and Y. She, ŞWhy deep learning works: A manifold disen-
tanglement perspective,Ť IEEE Transactions on Neural Networks and Learning

Systems, vol. 27, no. 10, pp. 1997Ű2008, 2016.

[110] MarketWatch, ŞArtiĄcial Intelligence (AI) Chips Market Size, Share, Growth and
Forecast to 2027 with 36.6% CAGR.Ť https://www.marketwatch.com/press-
release/artiĄcial-intelligence-ai-chips-market-size-share-growth-and-forecast-
to-2027-with-366-cagr-141-pages-report-2022-09-20. Accessed: Sept. 23,
2022.

[111] NVIDIA, ŞNVIDIA Tensor Cores: Unprecedented Acceleration for HPC and AI.Ť
ttps://www.nvidia.com/en-us/data-center/tensor-cores/. Accessed: Sept. 23,
2022.

[112] TechRepublic, ŞMassive Intel CPU Ćaw: Understanding the technical details of
Meltdown and Spectre.Ť https://www.techrepublic.com/article/massive-intel-cpu-
Ćaw-understanding-the-technical-details-of-meltdown-and-spectre. Accessed: Feb
19, 2021.

[113] Black Hat, ŞExploiting the DRAM rowhammer bug to gain ker-
nel privileges.Ť https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-
Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf. Accessed:
Dec 9, 2022.

[114] Y. Gao and Y. Zhou, ŞSide-channel attacks with multi-thread mixed leakage,Ť
IEEE Transactions on Information Forensics and Security, vol. 16, pp. 770Ű785,
2021.

[115] NVIDIA, ŞRecord 136 NVIDIA GPU-Accelerated Supercomputers Feature
in TOP500 Ranking.Ť https://blogs.nvidia.com/blog/2019/11/19/record-gpu-
accelerated-supercomputers-top500/, 2019. Accessed: 2022-11-02.

85



[116] J. E. R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone, ŞFlexgripplus:
An improved GPGPU model to support reliability analysis,Ť Microelectronics

Reliability, vol. 109, p. 113660, 2020.

[117] M. Al Kadi, B. Janssen, and M. Huebner, ŞFgpu: An simt-architecture for
fpgas,Ť in Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, FPGA Š16, (New York, NY, USA), p. 254Ű263,
Association for Computing Machinery, 2016.

[118] ARM, ŞLearn the architecture - An introduction to AMBA AXI.Ť
https://developer.arm.com/documentation/102202/0300/AXI-protocol-
overview. Accessed: Sept. 27, 2022.

[119] R. Ma, J.-C. Hsu, T. Tan, E. Nurvitadhi, D. Sheffield, R. Pelt, M. Langhammer,
J. Sim, A. Dasu, and D. Chiou, ŞSpecializing fgpu for persistent deep learning,Ť
ACM Trans. Reconfigurable Technol. Syst., vol. 14, July 2021.

[120] V. Gangadhar, R. Balasubramanian, M. Drumond, Z. Guo, J. Menon, C. Joseph,
R. Prakash, S. Prasad, P. Vallathol, and K. Sankaralingam, ŞMiaow: An open
source gpgpu,Ť in 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1Ű43, 2015.

[121] P. Duarte, P. Tomas, and G. Falcao, ŞScratch: An end-to-end application-aware
soft-gpgpu architecture and trimming tool,Ť in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-50 Š17, (New
York, NY, USA), p. 165Ű177, Association for Computing Machinery, 2017.

[122] H. E. Sumbul, K. Vaidyanathan, Q. Zhu, F. Franchetti, and L. Pileggi, ŞA
synthesis methodology for application-speciĄc logic-in-memory designs,Ť in
ACM/EDAC/IEEE Design Automation Conference, pp. 1Ű6, 2015.

[123] J. Ahn, C. Jin, J. Kim, M. Rhu, Y. Fei, D. Kaeli, and J. Kim, ŞTrident: A hybrid
correlation-collision gpu cache timing attack for aes key recovery,Ť in 2021 IEEE

International Symposium on High-Performance Computer Architecture (HPCA),
pp. 332Ű344, 2021.

[124] Y. Gao, W. Cheng, H. Zhang, and Y. Zhou, ŞCache-collision attacks on gpu-
based aes implementation with electro-magnetic leakages,Ť in 2018 17th IEEE

International Conference On Trust, Security And Privacy In Computing And

Communications/ 12th IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE), pp. 300Ű306, 2018.

[125] OpenHW Group, ŞOpenHW Group CORE-V CV32E40P RISC-V IP.Ť
https://github.com/openhwgroup/cv32e40p. Accessed: Aug 15, 2022.

[126] Centre For Hardware Security, Tallinn University of Technology, ŞGPUPlanner.Ť
ttps://github.com/Centre-for-Hardware-Security/gpu-asic, 2022. Accessed: 2022-
11-03.

86



[127] M. Pecht and S. Tiku, ŞBogus: Electronic Manufacturing and Consumers Confront
a Rising Tide of Counterfeit Electronics,Ť IEEE Spectrum, vol. 43, no. 5, pp.

37–46, 2006.

[128] Defense Advanced Research Projects Agency, ŞLessons from History: The 1980s
Semiconductor Cycle(s).Ť https://www.darpa.mil/. Accessed: Oct. 5, 2022.

[129] Intelligence Advanced Research Projects Activity (IARPA), ŞTrusted Integrated Cir-
cuits Program,Ť [Online]. Available: https://www.iarpa.gov/index.php/research-
programs/tic.

[130] T. Kikkawa and R. Joshi, ŞDesign Technology Co-Optimization for 10 nm and
Beyond,Ť in Proceedings of the IEEE 2014 Custom Integrated Circuits Conference,
pp. 1Ű1, Sep. 2014.

[131] K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, ŞBuilding Trusted
ICs Using Split Fabrication,Ť IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), pp. 1Ű6, 2014.

[132] K. Vaidyanathan, R. Liu, E. Sumbul, Q. Zhu, F. Franchetti, and L. Pileggi,
ŞEfficient and Secure Intellectual Property (IP) Design with Split Fabrication,Ť in
2014 IEEE International Symposium on Hardware-Oriented Security and Trust

(HOST), pp. 13Ű18, 2014.

[133] B. Hill, R. Karmazin, C. T. O. Otero, J. Tse, and R. Manohar, ŞA Split-Foundry
Asynchronous FPGA,Ť in Proceedings of the IEEE 2013 Custom Integrated

Circuits Conference, pp. 1Ű4, Sep. 2013.

[134] T. Usui, K. Tsumura, H. Nasu, Y. Hayashi, G. Minamihaba, H. Toyoda, H. Sawada,
S. Ito, H. Miyajima, K. Watanabe, M. Shimada, A. Kojima, Y. Uozumi, and H. Shi-
bata, ŞHigh Performance Ultra Low-k (k=2.0/keff=2.4)/Cu Dual-Damascene
Interconnect Technology with Self-Formed MnSixOy Barrier Layer for 32 nm-
node,Ť in 2006 International Interconnect Technology Conference, pp. 216Ű218,
2006.

[135] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, ŞSecuring computer hardware
using 3d integrated circuit (IC) technology and split manufacturing for obfusca-
tion,Ť in 22nd USENIX Security Symposium (USENIX Security 13), pp. 495Ű510,
USENIX Association, Aug. 2013.

[136] R. S. Rajarathnam, Y. Lin, Y. Jin, and D. Z. Pan, ŞRegds: A reverse engineering
framework from gdsii to gate-level netlist,Ť in 2020 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), pp. 154Ű163, 2020.

[137] S. N. Pagliarini, M. M. Isgenc, M. G. A. Martins, and L. Pileggi, ŞApplication and
Product-Volume-SpeciĄc Customization of BEOL Metal Pitch,Ť IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 9, pp. 1627Ű1636,
2018.

87



[138] J. Rajendran, O. Sinanoglu, and R. Karri, ŞIs Split Manufacturing Secure?,Ť in
Design, Automation and Test in Europe (DATE), no. Ic, pp. 1259Ű1264, 2013.

[139] J. Magaña, D. Shi, and A. Davoodi, ŞAre Proximity Attacks a Threat to the
Security of Split Manufacturing of Integrated Circuits?,Ť IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), vol. 07-10-Nove, no. c, pp. 1Ű7,
2016.

[140] Y. Wang, P. Chen, J. Hu, G. Li, and J. Rajendran, ŞThe Cat and Mouse in
Split Manufacturing,Ť IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 26, no. 5, pp. 805Ű817, 2018.

[141] W. Zeng, B. Zhang, and A. Davoodi, ŞAnalysis of Security of Split Manufacturing
Using Machine Learning,Ť IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 27, no. 12, pp. 2767Ű2780, 2019.

[142] H. Li, S. Patnaik, A. Sengupta, H. Yang, J. Knechtel, B. Yu, E. F. Y. Young, and
O. Sinanoglu, ŞAttacking split manufacturing from a deep learning perspective,Ť
in 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1Ű6, 2019.

[143] S. Chen and R. Vemuri, ŞOn the Effectiveness of the SatisĄability Attack on Split
Manufactured Circuits,Ť in 2018 IFIP/IEEE International Conference on Very

Large Scale Integration (VLSI-SoC), pp. 83Ű88, 2018.

[144] S. Chen and R. Vemuri, ŞExploiting Proximity Information in a SatisĄability
Based Attack Against Split Manufactured Circuits,Ť Proceedings of the 2019

IEEE International Symposium on Hardware Oriented Security and Trust, HOST

2019, pp. 171Ű180, 2019.

[145] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, ŞNetwork Flows: Theory, Algorithms,
and Applications.,Ť Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[146] H. Zhou, R. Jiang, and S. Kong, ŞCycSAT: SAT-Based Attack on Cyclic Logic
Encryptions,Ť in 2017 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pp. 49Ű56, 2017.

[147] M. Jagasivamani, P. Gadfort, M. Sika, M. Bajura, and M. Fritze, ŞSplit-
Fabrication Obfuscation: Metrics and techniques,Ť IEEE International Symposium

on Hardware-Oriented Security and Trust (HOST), pp. 7Ű12, 2014.

[148] O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar, ŞAutomatic Obfuscated
Cell Layout for Trusted Split-Foundry Design,Ť IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST), pp. 56Ű61, 2015.

[149] K. Xiao, D. Forte, and M. M. Tehranipoor, ŞEfficient and secure split manufac-
turing via obfuscated built-in self-authentication,Ť in 2015 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), pp. 14Ű19, 2015.

[150] P. Yang and M. Marek-Sadowska, ŞMaking split-fabrication more secure,Ť in
2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 1Ű8, 2016.

88



[151] Y. Wang, P. Chen, J. Hu, and J. Rajendran, ŞRouting Perturbation for Enhanced
Security in Split Manufacturing,Ť Asia and South Pacific Design Automation

Conference (ASP-DAC), pp. 605Ű610, 2017.

[152] L. Feng, Y. Wang, J. Hu, W. K. Mak, and J. Rajendran, ŞMaking Split Fabrication
Synergistically Secure and Manufacturable,Ť IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), vol. 2017-Novem, pp. 313Ű320, 2017.

[153] A. Sengupta, S. Patnaik, J. Knechtel, M. Ashraf, S. Garg, and O. Sinanoglu,
ŞRethinking Split Manufacturing: An Information-Theoretic Approach with Secure
Layout Techniques,Ť IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), vol. 2017-Novem, pp. 329Ű336, 2017.

[154] Z. Chen, P. Zhou, T. Y. Ho, and Y. Jin, ŞHow Secure is Split Manufacturing
in Preventing Hardware Trojan?,Ť IEEE Asian Hardware Oriented Security and

Trust Symposium (AsianHOST), pp. 1Ű6, 2017.

[155] S. Patnaik, J. Knechtel, M. Ashraf, and O. Sinanoglu, ŞConcerted Wire Lifting:
Enabling Secure and Cost-Effective Split Manufacturing,Ť Asia and South Pacific

Design Automation Conference (ASP-DAC), vol. 2018-Janua, pp. 251Ű258, 2018.

[156] S. Patnaik, M. Ashraf, J. Knechtel, and O. Sinanoglu, ŞRaise Your Game for
Split Manufacturing: Restoring the True Functionality Through BEOL,Ť Design

Automation Conference (DAC), pp. 1Ű6, 2018.

[157] M. A. Masoud, Y. Alkabani, and M. W. El-Kharashi, ŞObfuscation of Digital
Systems using Isomorphic Cells and Split Fabrication,Ť International Conference

on Computer Engineering and Systems (ICCES), pp. 488Ű493, 2019.

[158] M. Li, B. Yu, Y. Lin, X. Xu, W. Li, and D. Z. Pan, ŞA Practical Split Manufacturing
Framework for Trojan Prevention via Simultaneous Wire Lifting and Cell Insertion,Ť
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 38, no. 9, pp. 1585Ű1598, 2019.

[159] Tezzarron Semiconductors, ŞLessons from History: The 1980s
Semiconductor Cycle(s).Ť http://www.tezzaron.com/media/3D-
ICs_and_Integrated_Circuit_Security.pdf. Accessed: March 19, 2020.

[160] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma, and N. Nosovic, ŞDijkstraŠs
Shortest Path Algorithm Serial and Parallel Execution Performance Analysis,Ť in
2012 Proceedings of the 35th International Convention MIPRO, pp. 1811Ű1815,
2012.

[161] D. Z. Pan, B. Yu, and J. Gao, ŞDesign for Manufacturing With Emerging
Nanolithography,Ť IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 32, no. 10, pp. 1453Ű1472, 2013.

[162] Y. Ding, C. Chu, and Wai-Kei Mak, ŞThroughput Optimization for SADP and
E-beam Based Manufacturing of 1D Layout,Ť in 2014 51st ACM/EDAC/IEEE

Design Automation Conference (DAC), pp. 1Ű6, 2014.

89



[163] M. Schobert et al., ŞDegate.Ť http://www.degate.org/, 2011. Accessed: 2022-
11-05.

[164] V. Gohil, M. Tressler, K. Sipple, S. Patnaik, and J. Rajendran, ŞGames, dollars,
splits: A game-theoretic analysis of split manufacturing,Ť IEEE Transactions on

Information Forensics and Security, vol. 16, pp. 5077Ű5092, 2021.

[165] S. M. Ben, ŞSecurity challenges and requirements for industrial control systems
in the semiconductor manufacturing sector,Ť 2012.

[166] T. Trippel et al., ŞICAS: An Extensible Framework for Estimating the Susceptibility
of IC Layouts to Additive Trojans,Ť 2020 IEEE Symposium on Security and Privacy

(SP), pp. 1078Ű1095, 2020.

[167] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, ŞPresent: An ultra-lightweight block cipher,Ť
in Cryptographic Hardware and Embedded Systems - CHES 2007 (P. Paillier
and I. Verbauwhede, eds.), (Berlin, Heidelberg), pp. 450Ű466, Springer Berlin
Heidelberg, 2007.

[168] S. Ghandali et al., ŞSide-channel hardware trojan for provably-secure sca-protected
implementations,Ť IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 28, no. 6, pp. 1435Ű1448, 2020.

[169] H. Salmani, M. Tehranipoor, and J. Plusquellic, ŞA novel technique for improving
hardware trojan detection and reducing trojan activation time,Ť IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 20, pp. 112Ű125, Jan 2012.

[170] S. Yu, W. Liu, and M. OŠNeill, ŞAn improved automatic hardware trojan generation
platform,Ť in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 302Ű307, 7 2019.

[171] W. Hu, A. Ardeshiricham, and R. Kastner, ŞHardware information Ćow tracking,Ť
vol. 54, no. 4, pp. 83:1Ű83:39.

[172] T. Meade, ŞNetlist Analysis Toolset (NETA).Ť https://github.com/jinyier/NetA,
2018. Accessed: 2022-11-05.

[173] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, ŞBench-
marking of hardware trojans and maliciously affected circuits,Ť Journal of Hardware

and Systems Security, vol. 1, pp. 85Ű102, Mar 2017.

[174] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno, ŞA case study in
hardware trojan design and implementation,Ť vol. 10, no. 1, pp. 1Ű14.

[175] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, ŞBioHT (Blind Inser-
tion of Hardware Trojans) Tool.Ť https://github.com/Centre-for-Hardware-
Security/bio_hardware_trojan, 2016. Accessed: 2021-11-25.

90



Acknowledgements

First and foremost, I must thank my supervisor and head of the Centre for Hardware
Security, Prof. Dr. Samuel Pagliarini. He was the one that introduced me to the Ąeld of
Hardware Security. His deep knowledge inspired and gave me the conĄdence that this
topic was worth researching. Completing this PhD would not have been possible without
his assistance and tremendous dedication. Thank you very much for your support and
understanding over these past three years of hard work. Furthermore, I would like to
thank all Centre Hardware for Security members and the Dept. of Computer Systems
for their support and collaboration.

I also want to express sincere gratitude to my closest friends, Chaves, Dr. Henrique,
Dr. Fernando, Felipe, my sister Isabela, and my brother Rodrigo. When I faced uncertain
moments, I could always count on my friends to steer me in the right direction. When
my papers were accepted, sharing the news and celebrating with my friends made the
accomplishments much more joyful. I deeply value their support, fruitful conversations,
and almost daily friendly chats. Not only they helped me with work-related tasks, but
they brought work-life balance during my studies. I am fortunate to have such friends.

Thanks to the Tallinn University of Technology for providing the structure, resources,
and Ąnancial means to complete this PhD thesis. I am deeply grateful to the projects and
organizations that have supported me during my PhD studies; "Novel and Competent
Solutions Towards Synthesizing Trusted Hardware," Estonian Research Council; SAFEST,
European Commission; SMART4ALL, European Commission; IT Academy, European
Social Fund and Estonian Education and Youth Board. Special thanks to the Technical
University of Munich for having me for almost a month.

Most importantly, I am grateful for my familyŠs unconditional, unequivocal, and
loving support.

91



Abstract
Security-Aware Physical Synthesis of Integrated Circuits
The conception of a modern hardware device is a collective effort shared between differ-
ent entities. This characteristic makes the integrated circuit supply chain decentralized,
complex, and highly globalized. Moreover, for modern hardware devices, the current
organization of the IC supply chain is arguably a security threat. Since critical infrastruc-
tures are increasingly deploying integrated circuits-based systems, a compromise chip
belonging to one of these systems can lead to the leakage of sensitive data and even
more dire consequences. Therefore, ensuring the integrity of the technologies is crucial
for protecting digital information and maintaining critical operational systems Ű this is
precisely the focus of the hardware security Ąeld. The IC is susceptible to many recently
demonstrated threats during its lifespan, such as the insertion of hardware trojans, IP
piracy, overbuilding, reverse engineering, and side-channel attacks. However, only a
handful of countermeasures for speciĄc threats have been proposed Ű for example, Split
Manufacturing, Logic Locking, and IC CamouĆage. Unfortunately, the current state of
these techniques makes them unsuitable for large-scale production of ICs, either because
of practicality and/or insufficient security guarantees. Therefore, this thesis presents
a comprehensive study of different hardware security topics. All the presented results
in this PhD thesis aim to accelerate the hardware security Ąeld to determine the ICŠs
security level. The main contributions are summarized as follows:

Open-source GPU architecture to aid the research of domain-specific ASIC
accelerators based on GPU-like accelerators – termed G-GPU. Capable
modern system-on-chips are essential to the fast development of IC-based systems.
However, the literature lacks an open-source GPU architecture for application-
speciĄc integrated circuits. Hence, I propose an open-source GPU architecture
targetting ASIC to close this research gap in this thesis. Among the few GPU
architectures available in the literature is the FGPU, a GPU for FPGA instead
of ASIC. Utilizing the FGPU as a baseline, I translated it to targeting ASIC
and optimized the architecture utilizing smart memory division Ű the resulting
architecture is referred to as G-GPU. The G-GPU performance results compared
with the RISC-V show that the G-GPU has excellent beneĄts for applications
with high parallelism. In addition, a full framework is also made publicly available
for generating G-GPU IPs from the RTL to a tape-out-ready layout Ű called
GPUPlanner. The GPUPlanner also has the possibility of power gating, enabling
the creation of low-power, design for reliability, and even security solutions. On top
of that, the results include 6 G-GPU versions of tapeout-ready layouts implemented
in a 65nm CMOS technology. Those versions vary in the number of computing
units, operating frequency, and power gating implementation.

A Survey on Split Manufacturing attacks and defenses. Due to the current
IC supply chain organization, most design companies, must outsource their design
manufacturing to pure-play foundries. This practice is arguably a security threat for
ICs. Exposing their layouts to third-party entities can reveal trademark IP secrets.
In the worst scenario, a rogue element inside such foundries could manipulate the

92



layout for malicious reasons. Split manufacturing is a promising defense technique
to overcome concerns associated with outsourcing IC manufacturing. In Split
Manufacturing, the Front End of Line (FEOL) layers (transistors and lower metal
layers) are manufactured at an untrusted high-end foundry. The Back End of Line
(BEOL) layers (higher metal layers) are manufactured at a trusted low-end foundry.
The presented survey in this thesis is a detailed overview of the technique, the
many attacks towards Split Manufacturing, and the possible defense techniques
described in the literature. Different threat models and assumptions for the
attacks are concisely presented. The defense techniques studies are classiĄed
into proximity perturbation, wire lifting, and layout obfuscation. The primary
outcome of our survey is to highlight the discrepancy between many studies Ű
some claim netlists can be reconstructed with near-perfect precision. In contrast,
others claim marginal success in retrieving BEOL connections. Finally, future
trends and challenges inherent in Split Manufacturing are discussed, including
the difficulty of evaluating the efficiency of the technique.

A methodology for inserting hardware trojans into finalized layouts. One
of the many potential threats to an IC during manufacturing is the insertion of
a hardware trojan. The literature has many hardware trojan demonstrations, a
few even in silicon; however, not a single one disclosed how their hardware trojan
is inserted. In this thesis, I proposed a complete framework based on the ECO
feature for inserting HTs in a Ąnalized layout and a novel side-channel hardware
trojan (SCT) architecture to demonstrate the framework. The SCT is designed to
aid power side-channel attacks by inducing controlled power consumption. The
SCT insertion was detailed step by step, showing that a rogue element inside a
foundry can replicate it effortlessly. Furthermore, the SCT attack was validated by
the developed ASIC prototype in a 65nm CMOS technology. The ASIC prototype
comprises four crypto cores, two versions of the AES, and two of the Present,
each altered with an SCT. The chip testbench results demonstrated the attackŠs
success for all samples available, where the cryptokey was extracted via power
signature. The measurements have also demonstrated the robustness of the SCT
against skews from the manufacturing process. On top of that, the testchip had
all 4 SCTs inserted in less than two hours, making the attack viable in an actual
fabrication-time attack as it has a limited time window.

Moreover, an upgraded version of the framework for blindly inserting HTs is
presented to further demonstrate ECOŠs framework capabilities Ű termed BioHT.
Hence, the BioHT framework leverages reverse engineering techniques to introduce
sophisticated trojan into circuits, with little knowledge about the target designs.
Furthermore, the BioHT experiments demonstrated that the complete approach is
fast, allowing the user to execute it multiple times in the time frame between the
tape-out and manufacturing. Thus, enabling the selection of the optimum trojan
out of several possibilities. Moreover, BioHT also demonstrates how a realistic
trojan insertion would be performed and can guide risk assessment, defense, and
future research on the topic.

93



Kokkuvõte
Integraallülituste turvateadlik füüsiline süntees
Kaasaegse riistvaraseadme kontseptsioon on ühine jõupingutus, mida jagatakse erinevate
üksuste vahel. See omadus muudab integraallülituse tarneahela detsentraliseerituks,
keerukaks ja väga globaliseerituks. Veelgi enam, tänapäevaste riistvaraseadmete jaoks
on integraallülituse tarneahela praegune korraldus vaieldamatult julgeolekuoht. Kuna
kriitilistes infrastruktuurides kasutatakse üha enam integraallülitustel põhinevaid süs-
teeme, siis võib üks neisse süsteemidesse kuuluv tahtlikult kahjustatud kiip põhjustada
tundlike andmete lekkimist või veelgi kohutavamaid tagajärgi. Seetõttu on tehnoloogiate
terviklikkuse tagamine ülioluline digitaalse teabe kaitsmisel ja kriitiliste operatsioonisüs-
teemide ülalpidamisel Ű just see on riistvaraturbe valdkonna fookus. Integraallülitus on
oma eluea jooksul vastuvõtlik paljudele hiljuti demonstreeritud ohtudele, nagu riistvara
troojade lisamine, intellektuaalomandi piraatlus, ületootmine, pöördprojekteerimine
ja külgkanalite rünnakud. Siiski on välja pakutud vaid käputäis konkreetsete ohtude
vastumeetmeid Ű näiteks jaotatud tootimne, loogika lukustus ja integraal lülituse mas-
keerimine. Kahjuks muudab antud meetotite praegune seisukord nende praktilisuse ja/või
ebapiisavate turvagarantiide tõttu ebasobivaks integraallülituste suuremahulisel toot-
misel. Käesolev lõputöö esitab põhjaliku uuringu erievate riistvaraturbe teemade kohta.
Esitatud tulemused on suunatud riistvaraturbe valdkonna kiirendamisele, et määrata
kindlaks integraallülituste turbetase. Peamised panused on kokku võetud järgmiselt:

Avatud lähtekoodiga graafika töötlemisüksuse (GPU) arhitektuur, mis aitab
uurida domeenile iseloomulikke rakendusspetsiifilisi integraallülituskiiren-
deid (ASIC), mis põhinevad GPU-laadsetel kiirenditel – mida nimetatakse
G-GPU-ks. Võimsad kaasaegsed süsteemkiibid on integraallülituspõhiste süsteemi-
de kiireks arendamiseks olulised.Siiski puudub kirjanduses avatud lähtekoodiga
GPU arhitektuur ASIC-u jaoks. Seetõttu pakun välja avatud lähtekoodiga GPU-
arhitektuuri, mis on suunatud ASIC-ule, et täita see uurimislünk selle lõputööga.
Kirjanduses vähe saadaolevate GPU-arhitektuuride hulgas on väljatoodud FG-
PU, mis on programmeeritaval ventiilmaatriksil (FPGA) baseeruv GPU disain.
Baseerudes FGPU lähetkoodile muutsin antud disaini ASIC spetsiiĄliseks ja op-
timeerisin arhitektuuri mis kasutaks nutikat mälujaotust Ű saadud arhitektuuri
nimetatakse G-GPU-ks. G-GPU jõudlustulemused võrreldes RISC-V-ga näitavad,
et G-GPU-l on suure paralleelsusega rakenduste jaoks suurepärased eelised. Lisaks
on avalikustatud ka täielik raamistik G-GPU intellektuaalomandi genereerimiseks
registersiirde tasemelt kuni tootmisvalmis kiibi pinnalaotuse disainini Ű nimega
GPUPlanner. Antud raamistikku on ka lisatud toitevärava lisamise võimekus, mis
võimaldab luua väikesema voolutarbega sedmeid, töökindlamaid disaine ja isegi
lisada turvalahendusi. Lisaks on tulemustes väljatoodud 6 G-GPU tootmisvalmis
pinnalaotuse disaini, mis on realiseeritud 65 nm CMOS-tehnoloogias. Need ver-
sioonid erinevad arvutusüksuste arvu, töösageduse ja toitevärava rakendamise
poolest.

Ülevaade jaotatud-tootmise rünnakute ja kaitsemehhanismide kohta. Prae-
guse integraallülituste tarneahela korralduse tõttu peavad enamik disainiettevõtteid

94



oma disainitootmise allhankima kitsalt tegutsevatele kiibitootmis tööstustele. See
praktika on vaieldamatult turvaoht integraallülituste tootmisel. Nende kiibi pinna-
laotuse disainide avaldamine kolmandatele osapooltele võib paljastada kaubamärgi
intellektuaalomandi saladusi. Halvima stsenaariumi korral võib sellises tehases
olev petturlik element pahatahtlikel põhjustel kiibi pinnalaotust manipuleerida.
Jaotatud tootmine on paljulubav kaitsetehnika, mis aitab ületada integraallü-
lituste tootmise allhangetega seotud muresid. Jaotatud tootmisel toodetakse
FEOL-i (Front End of Line) kihte (transistorid ja alumised metallikihid) ebausal-
dusväärses kõrgekvaliteedilises kiibitootmis tehases. BEOL (Back End of Line)
kihid (kõrgemad metallikihid) on toodetud usaldusväärses madala kvaliteediga
tehases. Käesolevas lõputöös esitatud uuring on üksikasjalik ülevaade antud teh-
nikast, paljudest rünnakutest jaotatud tootmise vastu ja kirjanduses kirjeldatud
võimalikest kaitsetehnikatest. Lühidalt on välja toodud erinevad ohumudelid ja
eeldused rünnakute kohta. Kaitsetehnikate uuringud on klassiĄtseeritud järgnevalt:
lähedus põhine häirimine, traadi tõstmine ja pinnalaotuse hägustamine. Ülevaate
peamine tulemus on tuua esile lahknevus paljude uuringute vahel Ű väidetavalt on
võimalik riistvara kirjeldust rekonstrueerida peaaegu täiusliku täpsusega. Seevastu
on esitatud vaid marginaalt edu BEOL-ühenduste taastamisel. Lõpuks arutatakse
jagatud tootmisega seotud tulevikusuundumusi ja väljakutseid, sealhulgas tehnika
tõhususe hindamise raskusi.

Riistvaratroojalaste lisamise metootika tootmisvalmis pinnalaotus disainile.
Üks paljudest potentsiaalsetest ohtudest integraallülitustele tootmise ajal on riistva-
ralise troojalase lisamine. Kirjanduses on korduvalt demonstratreeritud riistvaralisi
troojalasi, mõned isegi ränis; aga ükski neist ei avaldanud, kuidas nende riistvara
troojalane on sisestatud. Selles lõputöös pakkusin välja tervikliku raamistiku, mis
põhineb ECO-funktsioonil riistvara troojade (HT) sisestamiseks tootmisvalmis
pinnalaouts disainile ja uudset külgkanali riistvara trooja (SCT) arhitektuuri, et
demonstreerida antud raamistikku. SCT on loodud toetama külgkanalite rünna-
kuid, mida kutsutakse esile kontrollitud energiatarbimisega. SCT sisestamine on
üksikasjalikult kirjeldatud, näidates, et tehases olev petturlik element suudab seda
vaevata korrata. Kirjeldatud SCT rünnak valideeriti välja töötatud ASIC proto-
tüübis, mis oli toodetud 65 nm CMOS-tehnoloogias. ASIC-prototüüp koosneb
neljast krüptotuumast, kahest AES-i versioonist ja kahest PRESENT-i versioonist,
millest igaüks on muudetud SCT-ga. Kiibi testimise tulemused näitasid rünnaku
edukust kõigi katsete puhul, kus krüptovõti ekstraheeriti voolutarbe karrakteristiku
kaudu. Mõõtmised näitasid ka SCT vastupidavust tootmisprotsessist tulenevate
variatsioonide vastu. Peale selle sisestati testkiibile kõik 4 SCT-d vähem kui kahe
tunniga, muutes antud rünnaku reaalseks ohuks tegeliku tootmise korral, kuna
sellel on piiratud ajavahemik.

Lisaks esitletakse HT-de pimesi lisamist raamistiku täiendatud versioonis, et veelgi
demonstreerida ECO raamistiku võimeid Ű nimega BioHT. Seega kasutab BioHT
raamistik pöördprojekteerimise tehnikaid, et viia integraallülitustesse keerukaid
troojalasi, omades sealhulgas vähe teadmisi antud disaini kohta. Lisaks näitasid
BioHT katsed, et täielik lähenemine on kiire, võimaldades kasutajal troojade

95


