More Advanced CPU

From ATI public wiki
Jump to: navigation, search

CPU project is one of the projects designed in department of computer engineering at TTU as a lab project. The main aims of this project are:

  • Developing a simple generic CPU
  • Developing peripherals for it
  • Writing a compiler and assembler for it
  • Compiling GCC for this architecture
  • Booting a lightweight linux on it

This project has many interesting points and which can be used for laboratories in different courses.

Hardware Design

CPU Design

 text
Fig 1: System Block Diagram

Functionality Requirements

The CPU is supposed to be able to perform the following operations:

  • Addition/Subtraction
  • Increment/Decrement
  • Arithmetic and Logical Shift and Rotate through carry
  • Bitwise AND, OR, XOR and NOT
  • Negation
  • Load/Store
  • Unconditional Branch (jump)
  • Branch if zero / Branch if Overflow / Branch if Carry/ Branch if Equal
  • Clear Registers/Flags
  • PUSH / POP
  • NOP/HALT

It can use these operations to build more sophisticated operations later.

Architecture

The architecture of this CPU is based on Harvard architecture which has separate instruction and data memory. The instructions are assumed to be in the instruction memory before boot.

Instruction Format

Our CPU's instruction has 8 bit of Op-code and one operand that can be as long as 32 bit. First 2 bits of OP-code are at the moment reserved.

 text
Fig 3: Instruction format

Addressing Modes

The following Addressing modes are supported in out processor:

  • direct: program counter jumps to an address directly provided to it through instruction's operand
  • relative: the program counter will jump to a location relative to its current location
  • indirect: program counter will jump to an address stored in a memory location
  • register: program counter will jump to an address stored in a register
  • indexed: program counter will jump to an address stored in the memory with address stored in a register

Instruction Set (IS)

The following instructions designed for the CPU:

Table 1: Instruction Set
Instruction Register Transfer Language OpCode Reg_in_sel Reg_out_sel DPU Command Data To DPU rd_MemAddress Next PC
1 Add_A_R A <-- A + R(operand) 00 0000 ---- operand(2 downto 0) 00 000 0000 10 ---- ---- PC_out+1
2 Add_A_Mem A <-- A + Mem[Operand] 00 0001 ---- ---- 00 000 0000 00 ---- Operand PC_out+1
3 Add_A_Dir A <-- A + Operand 00 0010 ---- ---- 00 000 0000 01 Operand ---- PC_out+1
4 Sub_A_R A <-- A - R(operand) 00 0011 ---- operand(2 downto 0) 00 000 0001 10 ---- ---- PC_out+1
5 Sub_A_Mem A <-- A - Mem[Operand] 00 0100 ---- ---- 00 000 0001 00 ---- Operand PC_out+1
6 Sub_A_Dir A <-- A - Operand 00 0101 ---- ---- 00 000 0001 01 Operand ---- PC_out+1
7 IncA A <-- A + 1 00 0110 ---- ---- 00 000 0000 11 ---- ---- PC_out+1
8 DecA A <-- A - 1 00 0111 ---- ---- 00 000 0001 11 ---- ---- PC_out+1
9 ShiftArithR A <-- A(7) & A(7 downto 1) 00 1000 ---- ---- 00 000 0111 00 ---- ---- PC_out+1
10 ShiftArithL A <-- A(7) & A(5 downto 0)& '0' 00 1001 ---- ---- 00 000 1000 00 ---- ---- PC_out+1
11 ShiftA_R A <-- A(6 downto 0)& '0' 00 1010 ---- ---- 00 000 1010 00 ---- ---- PC_out+1
12 ShiftA_L A <-- '0' & A(7 downto 1) 00 1011 ---- ---- 00 000 1011 00 ---- ---- PC_out+1
13 RRC A <-- C & A(7 downto 1) ,C<-- A(0) 00 1100 ---- ---- 00 000 1110 XX ---- ---- PC_out+1
14 RLC A <-- A(6 downto 0) & C ,C<-- A(7) 00 1101 ---- ---- 00 000 1111 XX ---- ---- PC_out+1
15 And_A_B A <-- A and R(operand) 00 1110 ---- operand(2 downto 0) 00 000 0100 10 ---- ---- PC_out+1
16 OR_A_B A <-- A or R(operand) 00 1111 ---- operand(2 downto 0) 00 000 0101 10 ---- ---- PC_out+1
17 XOR_A_B A <-- A xor R(operand) 01 0000 ---- operand(2 downto 0) 00 000 0110 10 ---- ---- PC_out+1
18 FlipA A <-- not (A) 01 0001 ---- ---- 00 000 1100 00 ---- ---- PC_out+1
19 NegA A <-- not(A) + 1 01 0010 ---- ---- 00 000 1001 00 ---- ---- PC_out+1
20 Jmp PC <-- Operand 01 0011 ---- ---- 00 000 0010 XX ---- ---- Operand
21 JmpZ if Z = 1: PC <-- Operand 01 0100 ---- ---- 00 000 0010 XX ---- ---- if Z=1 then Operand else PC_out+1
22 JmpOV if OV = 1: PC <-- Operand 01 0101 ---- ---- 00 000 0010 XX ---- ---- if OV=1 then Operand else PC_out+1
23 JmpC if C = 1: PC <-- Operand 01 0110 ---- ---- 00 000 0010 XX ---- ---- if C=1 then Operand else PC_out+1
24 Jmp_rel PC <-- PC + Operand 01 0111 ---- ---- 00 000 0010 XX ---- ---- PC <-- PC + Operand
25 JMPEQ if EQ = 1: PC <-- Operand 01 1000 ---- ---- 00 000 0010 XX ---- ---- if EQ=1 then Operand else PC_out+1
26 ClearZ Z <--- 0 01 1001 ---- ---- 00 001 0010 XX ---- ---- PC_out+1
27 ClearOV OV <--- 0 01 1010 ---- ---- 00 010 0010 XX ---- ---- PC_out+1
28 ClearC C <--- 0 01 1011 ---- ---- 00 100 0010 XX ---- ---- PC_out+1
29 ClearACC ACC <-- 0 01 1100 ---- ---- 00 000 1101 XX ---- ---- PC_out+1
30 LoadPC PC <---- A 01 1101 ---- ---- 00 000 0010 XX ---- ---- A
31 SavePC A <---- PC 01 1110 ---- ---- 00 000 0011 01 PC ---- PC_out+1
32 Load_A_Mem A <-- Mem[Operand] 01 1111 ---- ---- 00 000 0011 00 ---- Operand PC_out+1
33 Store_A_Mem Mem[Operand] <-- A 10 0000 ---- ---- 00 000 0010 XX ---- ---- PC_out+1
34 Load_R0_Dir R0 <-- Operand 10 0001 00000001 ---- 01 000 0010 XX Operand ---- PC_out+1
35 Load_R0_Mem R0 <-- Mem[Operand] 10 0010 00000001 ---- 11 000 0010 XX ---- Operand PC_out+1
36 Load_A_R A <-- R(operand) 10 0011 ---- operand(2 downto 0) 00 000 0011 XX ---- ---- PC_out+1
37 Load_R_A R(operand) <-- A 10 0100 operand(7 downto 0) ---- 10 000 0010 XX ---- ---- PC_out+1
38 Load_Ind_A A <-- M[A] 10 0101 ---- ---- 00 000 0011 00 ---- A PC_out+1
39 PUSH Mem [0 + SP] <--- A,SP <--- SP + 1 11 1100 ---- ---- 00 000 0010 XX ---- ---- PC_out+1
40 POP A <--- Mem [0 + SP - 1],SP <--- SP - 1 11 1101 ---- ---- 00 000 0011 00 ---- SP - 1 PC_out+1
41 NOP NOP 11 1110 ---- ---- 00 000 0010 XX ---- ---- PC_out+1
42 HALT HALT 11 1111 ---- ---- 00 000 0010 XX ---- ---- PC

Implementation of complex instructions

the following instructions can be also implemented with the ones in IS:

  • Call "function_name":
PUSH
SavePC
Push
Jmp "function address"
POP  
  • Return:
POP
Add_A_Dir 4
LoadPC
  • IndJMP "MemAddress":
PUSH
Load_A_Mem "MemAddress"
LoadPC

Note: its important to POP back the ACC value on the jump destination.

  • JmpR:
PUSH
Load_A_R "----"
LoadPC

Note: its important to POP back the ACC value on the jump destination.

  • JmpIndx:
PUSH
Load_Ind_A
LoadPC

Note: its important to POP back the ACC value on the jump destination.

Different Implementations

Different implementations of PicoCPU are available:

Graphics Card Design

VGA Controller

A simple VGA controller has been designed and synthesised on Nexsys 3 board for the PicoCPU. Controller reads a frame from a video memory and displays it on the monitor. The memory is shared between VGA controller and the graphics processor (coming soon). The user constraint file (UCF) for the vga controller can be found here:

missing ucf file

Graphics processor

Future plans

The following are the future plans for CPU:

  • implement barrel shift on acc
  • Adding I/O
    • first try would be Input and Output registers
    • wishbone bus maybe?
  • Adding interrupts + super user mode (motorla has it MC68K)?
  • Pipelining
  • Branch prediction
  • UART implementation
  • implementation of Timers/Counters and peripherals
  • Direct Memory Access (DMA)
  • Memory management unit (MMU)

Assembler

Python Assembly translator

A simple assembly translator was designed to make debugging process faster. Here you can see 32 bit version of the code:

import re
InstructionOpCode = {

                'Add_A_B':	"000000",
                'Add_A_Mem': 	"000001",
                'Add_A_Dir': 	"000010",
                'Sub_A_B':	"000011",
                'Sub_A_Mem':	"000100",
                'Sub_A_Dir': 	"000101",

                'IncA': 	"000110",
                'DecA':		"000111",

                'ShiftArithR':	"001000",
                'ShiftArithL':	"001001",
                'ShiftA_R':	"001010",
                'ShiftA_L':	"001011",
                'RRC':	  	"001100",
                'RLC':		"001101",

                'And_A_B':	"001110",
                'OR_A_B':	"001111",
                'XOR_A_B':	"010000",
                'FlipA':	"010001",
                'NegA':		"010010 ",

                'Jump':		"010011",
                'JmpZ':		"010100",
                'JmpOV':	"010101",
                'JmpC':		"010110",
                'Jmp_rel':	"010111",
                'JMPEQ':	"011000",

                'ClearZ':	"011001",
                'ClearOV':	"011010 ",
                'ClearC':	"011011",
                'ClearACC':	"011100",

                'LoadPC': 	"011101",
                'SavePC':	"011110",

                'Load_A_Mem':	"011111",
                'Store_A_Mem':	"100000",
                'Load_B_Dir':	"100001",
                'Load_B_Mem':	"100010",

                'Load_A_B':	"100011",
                'Load_B_A':	"100100",
                'Load_Ind_A ':	"100101",

                'PUSH':		"111100",
                'POP':		"111101",
                'NOP':		"111110",
                'HALT':		"111111",

}
AssemblyFile = open('Assembly.txt', 'r+')
MachineCodeFile = open('MachineCode.txt', 'w')
counter=0
for line in AssemblyFile:

    for key in InstructionOpCode:
        if key in line:
            operand= "00000000"
            if "Mem" in line:
                operand = re.findall(r'\d+',line)[0]
            elif "Jmp" in line:
                operand = re.findall(r'\d+',line)[0]
            elif "Dir" in line:
                operand = re.findall(r'\d+',line)[0]
            operand = "00000000"+"00000000"+"00000000"+ operand
            MachineCodeFile.write(str(counter)+ " =>   "+ "\"00"+InstructionOpCode[key]+operand+'\",'+'\n')
            counter +=1

MachineCodeFile.close()
AssemblyFile.close()

Java Assembler

This Assembler is wrote by Karl Janson as a project during system modelling course. You can find the information about how to use it and also the links for downloading it in the User Manual.

Note: Codes and User Manual for the assembler are placed in the Public Domain with the authorization of its author, Karl Janson.

Compiler